# coding: utf-8
# Copyright (c) Pymatgen Development Team.
# Distributed under the terms of the MIT License.
"""
An interface to the excellent spglib library by Atsushi Togo
(http://spglib.sourceforge.net/) for pymatgen.
v1.0 - Now works with both ordered and disordered structure.
v2.0 - Updated for spglib 1.6.
v3.0 - pymatgen no longer ships with spglib. Instead, spglib (the python
version) is now a dependency and the SpacegroupAnalyzer merely serves
as an interface to spglib for pymatgen Structures.
"""
import itertools
import logging
from collections import defaultdict
import copy
import math
from math import cos
from math import sin
from fractions import Fraction
import numpy as np
import spglib
from pymatgen.core.structure import Structure, Molecule
from pymatgen.symmetry.structure import SymmetrizedStructure
from pymatgen.core.lattice import Lattice
from pymatgen.core.structure import PeriodicSite
from pymatgen.core.operations import SymmOp
from pymatgen.util.coord import find_in_coord_list, pbc_diff
__author__ = "Shyue Ping Ong"
__copyright__ = "Copyright 2012, The Materials Project"
__version__ = "3.0"
__maintainer__ = "Shyue Ping Ong"
__email__ = "shyuep@gmail.com"
__date__ = "May 14, 2016"
logger = logging.getLogger(__name__)
[docs]class SpacegroupAnalyzer:
"""
Takes a pymatgen.core.structure.Structure object and a symprec.
Uses spglib to perform various symmetry finding operations.
"""
def __init__(self, structure, symprec=0.01, angle_tolerance=5.0):
"""
Args:
structure (Structure/IStructure): Structure to find symmetry
symprec (float): Tolerance for symmetry finding. Defaults to 0.01,
which is fairly strict and works well for properly refined
structures with atoms in the proper symmetry coordinates. For
structures with slight deviations from their proper atomic
positions (e.g., structures relaxed with electronic structure
codes), a looser tolerance of 0.1 (the value used in Materials
Project) is often needed.
angle_tolerance (float): Angle tolerance for symmetry finding.
"""
self._symprec = symprec
self._angle_tol = angle_tolerance
self._structure = structure
latt = structure.lattice.matrix
positions = structure.frac_coords
unique_species = []
zs = []
magmoms = []
for species, g in itertools.groupby(structure,
key=lambda s: s.species):
if species in unique_species:
ind = unique_species.index(species)
zs.extend([ind + 1] * len(tuple(g)))
else:
unique_species.append(species)
zs.extend([len(unique_species)] * len(tuple(g)))
for site in structure:
if hasattr(site, 'magmom'):
magmoms.append(site.magmom)
elif site.is_ordered and hasattr(site.specie, 'spin'):
magmoms.append(site.specie.spin)
else:
magmoms.append(0)
self._unique_species = unique_species
self._numbers = zs
# For now, we are setting magmom to zero.
self._cell = latt, positions, zs, magmoms
self._space_group_data = spglib.get_symmetry_dataset(
self._cell, symprec=self._symprec, angle_tolerance=angle_tolerance)
[docs] def get_space_group_symbol(self):
"""
Get the spacegroup symbol (e.g., Pnma) for structure.
Returns:
(str): Spacegroup symbol for structure.
"""
return self._space_group_data["international"]
[docs] def get_space_group_number(self):
"""
Get the international spacegroup number (e.g., 62) for structure.
Returns:
(int): International spacegroup number for structure.
"""
return int(self._space_group_data["number"])
[docs] def get_space_group_operations(self):
"""
Get the SpacegroupOperations for the Structure.
Returns:
SpacgroupOperations object.
"""
return SpacegroupOperations(self.get_space_group_symbol(),
self.get_space_group_number(),
self.get_symmetry_operations())
[docs] def get_hall(self):
"""
Returns Hall symbol for structure.
Returns:
(str): Hall symbol
"""
return self._space_group_data["hall"]
[docs] def get_point_group_symbol(self):
"""
Get the point group associated with the structure.
Returns:
(Pointgroup): Point group for structure.
"""
rotations = self._space_group_data["rotations"]
# passing a 0-length rotations list to spglib can segfault
if len(rotations) == 0:
return '1'
return spglib.get_pointgroup(rotations)[0].strip()
[docs] def get_crystal_system(self):
"""
Get the crystal system for the structure, e.g., (triclinic,
orthorhombic, cubic, etc.).
Returns:
(str): Crystal system for structure or None if system cannot be detected.
"""
n = self._space_group_data["number"]
def f(i, j):
return i <= n <= j
cs = {"triclinic": (1, 2), "monoclinic": (3, 15),
"orthorhombic": (16, 74), "tetragonal": (75, 142),
"trigonal": (143, 167), "hexagonal": (168, 194),
"cubic": (195, 230)}
crystal_sytem = None
for k, v in cs.items():
if f(*v):
crystal_sytem = k
break
return crystal_sytem
[docs] def get_lattice_type(self):
"""
Get the lattice for the structure, e.g., (triclinic,
orthorhombic, cubic, etc.).This is the same than the
crystal system with the exception of the hexagonal/rhombohedral
lattice
Returns:
(str): Lattice type for structure or None if type cannot be detected.
"""
n = self._space_group_data["number"]
system = self.get_crystal_system()
if n in [146, 148, 155, 160, 161, 166, 167]:
return "rhombohedral"
elif system == "trigonal":
return "hexagonal"
else:
return system
[docs] def get_symmetry_dataset(self):
"""
Returns the symmetry dataset as a dict.
Returns:
(dict): With the following properties:
number: International space group number
international: International symbol
hall: Hall symbol
transformation_matrix: Transformation matrix from lattice of
input cell to Bravais lattice L^bravais = L^original * Tmat
origin shift: Origin shift in the setting of "Bravais lattice"
rotations, translations: Rotation matrices and translation
vectors. Space group operations are obtained by
[(r,t) for r, t in zip(rotations, translations)]
wyckoffs: Wyckoff letters
"""
return self._space_group_data
def _get_symmetry(self):
"""
Get the symmetry operations associated with the structure.
Returns:
Symmetry operations as a tuple of two equal length sequences.
(rotations, translations). "rotations" is the numpy integer array
of the rotation matrices for scaled positions
"translations" gives the numpy float64 array of the translation
vectors in scaled positions.
"""
d = spglib.get_symmetry(self._cell, symprec=self._symprec,
angle_tolerance=self._angle_tol)
# Sometimes spglib returns small translation vectors, e.g.
# [1e-4, 2e-4, 1e-4]
# (these are in fractional coordinates, so should be small denominator
# fractions)
trans = []
for t in d["translations"]:
trans.append([float(Fraction.from_float(c).limit_denominator(1000))
for c in t])
trans = np.array(trans)
# fractional translations of 1 are more simply 0
trans[np.abs(trans) == 1] = 0
return d["rotations"], trans
[docs] def get_symmetry_operations(self, cartesian=False):
"""
Return symmetry operations as a list of SymmOp objects.
By default returns fractional coord symmops.
But cartesian can be returned too.
Returns:
([SymmOp]): List of symmetry operations.
"""
rotation, translation = self._get_symmetry()
symmops = []
mat = self._structure.lattice.matrix.T
invmat = np.linalg.inv(mat)
for rot, trans in zip(rotation, translation):
if cartesian:
rot = np.dot(mat, np.dot(rot, invmat))
trans = np.dot(trans, self._structure.lattice.matrix)
op = SymmOp.from_rotation_and_translation(rot, trans)
symmops.append(op)
return symmops
[docs] def get_point_group_operations(self, cartesian=False):
"""
Return symmetry operations as a list of SymmOp objects.
By default returns fractional coord symmops.
But cartesian can be returned too.
Args:
cartesian (bool): Whether to return SymmOps as cartesian or
direct coordinate operations.
Returns:
([SymmOp]): List of point group symmetry operations.
"""
rotation, translation = self._get_symmetry()
symmops = []
mat = self._structure.lattice.matrix.T
invmat = np.linalg.inv(mat)
for rot in rotation:
if cartesian:
rot = np.dot(mat, np.dot(rot, invmat))
op = SymmOp.from_rotation_and_translation(rot, np.array([0, 0, 0]))
symmops.append(op)
return symmops
[docs] def get_symmetrized_structure(self):
"""
Get a symmetrized structure. A symmetrized structure is one where the
sites have been grouped into symmetrically equivalent groups.
Returns:
:class:`pymatgen.symmetry.structure.SymmetrizedStructure` object.
"""
ds = self.get_symmetry_dataset()
sg = SpacegroupOperations(self.get_space_group_symbol(),
self.get_space_group_number(),
self.get_symmetry_operations())
return SymmetrizedStructure(self._structure, sg,
ds["equivalent_atoms"],
ds["wyckoffs"])
[docs] def get_refined_structure(self):
"""
Get the refined structure based on detected symmetry. The refined
structure is a *conventional* cell setting with atoms moved to the
expected symmetry positions.
Returns:
Refined structure.
"""
# Atomic positions have to be specified by scaled positions for spglib.
lattice, scaled_positions, numbers \
= spglib.refine_cell(self._cell, self._symprec, self._angle_tol)
species = [self._unique_species[i - 1] for i in numbers]
s = Structure(lattice, species, scaled_positions)
return s.get_sorted_structure()
[docs] def find_primitive(self):
"""
Find a primitive version of the unit cell.
Returns:
A primitive cell in the input cell is searched and returned
as an Structure object. If no primitive cell is found, None is
returned.
"""
lattice, scaled_positions, numbers = spglib.find_primitive(
self._cell, symprec=self._symprec)
species = [self._unique_species[i - 1] for i in numbers]
return Structure(lattice, species, scaled_positions,
to_unit_cell=True).get_reduced_structure()
[docs] def get_ir_reciprocal_mesh(self, mesh=(10, 10, 10), is_shift=(0, 0, 0)):
"""
k-point mesh of the Brillouin zone generated taken into account
symmetry.The method returns the irreducible kpoints of the mesh
and their weights
Args:
mesh (3x1 array): The number of kpoint for the mesh needed in
each direction
is_shift (3x1 array): Whether to shift the kpoint grid. (1, 1,
1) means all points are shifted by 0.5, 0.5, 0.5.
Returns:
A list of irreducible kpoints and their weights as a list of
tuples [(ir_kpoint, weight)], with ir_kpoint given
in fractional coordinates
"""
shift = np.array([1 if i else 0 for i in is_shift])
mapping, grid = spglib.get_ir_reciprocal_mesh(
np.array(mesh), self._cell, is_shift=shift, symprec=self._symprec)
results = []
for i, count in zip(*np.unique(mapping, return_counts=True)):
results.append(((grid[i] + shift * (0.5, 0.5, 0.5)) / mesh,
count))
return results
[docs] def get_primitive_standard_structure(self, international_monoclinic=True):
"""
Gives a structure with a primitive cell according to certain standards
the standards are defined in Setyawan, W., & Curtarolo, S. (2010).
High-throughput electronic band structure calculations:
Challenges and tools. Computational Materials Science,
49(2), 299-312. doi:10.1016/j.commatsci.2010.05.010
Returns:
The structure in a primitive standardized cell
"""
conv = self.get_conventional_standard_structure(
international_monoclinic=international_monoclinic)
lattice = self.get_lattice_type()
if "P" in self.get_space_group_symbol() or lattice == "hexagonal":
return conv
transf = self.get_conventional_to_primitive_transformation_matrix(
international_monoclinic=international_monoclinic)
new_sites = []
latt = Lattice(np.dot(transf, conv.lattice.matrix))
for s in conv:
new_s = PeriodicSite(
s.specie, s.coords, latt,
to_unit_cell=True, coords_are_cartesian=True,
properties=s.properties)
if not any(map(new_s.is_periodic_image, new_sites)):
new_sites.append(new_s)
if lattice == "rhombohedral":
prim = Structure.from_sites(new_sites)
lengths = prim.lattice.lengths
angles = prim.lattice.angles
a = lengths[0]
alpha = math.pi * angles[0] / 180
new_matrix = [
[a * cos(alpha / 2), -a * sin(alpha / 2), 0],
[a * cos(alpha / 2), a * sin(alpha / 2), 0],
[a * cos(alpha) / cos(alpha / 2), 0,
a * math.sqrt(1 - (cos(alpha) ** 2 / (cos(alpha / 2) ** 2)))]]
new_sites = []
latt = Lattice(new_matrix)
for s in prim:
new_s = PeriodicSite(
s.specie, s.frac_coords, latt,
to_unit_cell=True, properties=s.properties)
if not any(map(new_s.is_periodic_image, new_sites)):
new_sites.append(new_s)
return Structure.from_sites(new_sites)
return Structure.from_sites(new_sites)
[docs] def get_conventional_standard_structure(
self, international_monoclinic=True):
"""
Gives a structure with a conventional cell according to certain
standards. The standards are defined in Setyawan, W., & Curtarolo,
S. (2010). High-throughput electronic band structure calculations:
Challenges and tools. Computational Materials Science,
49(2), 299-312. doi:10.1016/j.commatsci.2010.05.010
They basically enforce as much as possible
norm(a1)<norm(a2)<norm(a3)
Returns:
The structure in a conventional standardized cell
"""
tol = 1e-5
struct = self.get_refined_structure()
latt = struct.lattice
latt_type = self.get_lattice_type()
sorted_lengths = sorted(latt.abc)
sorted_dic = sorted([{'vec': latt.matrix[i],
'length': latt.abc[i],
'orig_index': i} for i in [0, 1, 2]],
key=lambda k: k['length'])
if latt_type in ("orthorhombic", "cubic"):
# you want to keep the c axis where it is
# to keep the C- settings
transf = np.zeros(shape=(3, 3))
if self.get_space_group_symbol().startswith("C"):
transf[2] = [0, 0, 1]
a, b = sorted(latt.abc[:2])
sorted_dic = sorted([{'vec': latt.matrix[i],
'length': latt.abc[i],
'orig_index': i} for i in [0, 1]],
key=lambda k: k['length'])
for i in range(2):
transf[i][sorted_dic[i]['orig_index']] = 1
c = latt.abc[2]
elif self.get_space_group_symbol().startswith(
"A"): # change to C-centering to match Setyawan/Curtarolo convention
transf[2] = [1, 0, 0]
a, b = sorted(latt.abc[1:])
sorted_dic = sorted([{'vec': latt.matrix[i],
'length': latt.abc[i],
'orig_index': i} for i in [1, 2]],
key=lambda k: k['length'])
for i in range(2):
transf[i][sorted_dic[i]['orig_index']] = 1
c = latt.abc[0]
else:
for i in range(len(sorted_dic)):
transf[i][sorted_dic[i]['orig_index']] = 1
a, b, c = sorted_lengths
latt = Lattice.orthorhombic(a, b, c)
elif latt_type == "tetragonal":
# find the "a" vectors
# it is basically the vector repeated two times
transf = np.zeros(shape=(3, 3))
a, b, c = sorted_lengths
for d in range(len(sorted_dic)):
transf[d][sorted_dic[d]['orig_index']] = 1
if abs(b - c) < tol and abs(a - c) > tol:
a, c = c, a
transf = np.dot([[0, 0, 1], [0, 1, 0], [1, 0, 0]], transf)
latt = Lattice.tetragonal(a, c)
elif latt_type in ("hexagonal", "rhombohedral"):
# for the conventional cell representation,
# we allways show the rhombohedral lattices as hexagonal
# check first if we have the refined structure shows a rhombohedral
# cell
# if so, make a supercell
a, b, c = latt.abc
if np.all(np.abs([a - b, c - b, a - c]) < 0.001):
struct.make_supercell(((1, -1, 0), (0, 1, -1), (1, 1, 1)))
a, b, c = sorted(struct.lattice.abc)
if abs(b - c) < 0.001:
a, c = c, a
new_matrix = [[a / 2, -a * math.sqrt(3) / 2, 0],
[a / 2, a * math.sqrt(3) / 2, 0],
[0, 0, c]]
latt = Lattice(new_matrix)
transf = np.eye(3, 3)
elif latt_type == "monoclinic":
# You want to keep the c axis where it is to keep the C- settings
if self.get_space_group_operations().int_symbol.startswith("C"):
transf = np.zeros(shape=(3, 3))
transf[2] = [0, 0, 1]
sorted_dic = sorted([{'vec': latt.matrix[i],
'length': latt.abc[i],
'orig_index': i} for i in [0, 1]],
key=lambda k: k['length'])
a = sorted_dic[0]['length']
b = sorted_dic[1]['length']
c = latt.abc[2]
new_matrix = None
for t in itertools.permutations(list(range(2)), 2):
m = latt.matrix
latt2 = Lattice([m[t[0]], m[t[1]], m[2]])
lengths = latt2.lengths
angles = latt2.angles
if angles[0] > 90:
# if the angle is > 90 we invert a and b to get
# an angle < 90
a, b, c, alpha, beta, gamma = Lattice(
[-m[t[0]], -m[t[1]], m[2]]).parameters
transf = np.zeros(shape=(3, 3))
transf[0][t[0]] = -1
transf[1][t[1]] = -1
transf[2][2] = 1
alpha = math.pi * alpha / 180
new_matrix = [[a, 0, 0],
[0, b, 0],
[0, c * cos(alpha), c * sin(alpha)]]
continue
elif angles[0] < 90:
transf = np.zeros(shape=(3, 3))
transf[0][t[0]] = 1
transf[1][t[1]] = 1
transf[2][2] = 1
a, b, c = lengths
alpha = math.pi * angles[0] / 180
new_matrix = [[a, 0, 0],
[0, b, 0],
[0, c * cos(alpha), c * sin(alpha)]]
if new_matrix is None:
# this if is to treat the case
# where alpha==90 (but we still have a monoclinic sg
new_matrix = [[a, 0, 0],
[0, b, 0],
[0, 0, c]]
transf = np.zeros(shape=(3, 3))
for c in range(len(sorted_dic)):
transf[c][sorted_dic[c]['orig_index']] = 1
# if not C-setting
else:
# try all permutations of the axis
# keep the ones with the non-90 angle=alpha
# and b<c
new_matrix = None
for t in itertools.permutations(list(range(3)), 3):
m = latt.matrix
a, b, c, alpha, beta, gamma = Lattice(
[m[t[0]], m[t[1]], m[t[2]]]).parameters
if alpha > 90 and b < c:
a, b, c, alpha, beta, gamma = Lattice(
[-m[t[0]], -m[t[1]], m[t[2]]]).parameters
transf = np.zeros(shape=(3, 3))
transf[0][t[0]] = -1
transf[1][t[1]] = -1
transf[2][t[2]] = 1
alpha = math.pi * alpha / 180
new_matrix = [[a, 0, 0],
[0, b, 0],
[0, c * cos(alpha), c * sin(alpha)]]
continue
elif alpha < 90 and b < c:
transf = np.zeros(shape=(3, 3))
transf[0][t[0]] = 1
transf[1][t[1]] = 1
transf[2][t[2]] = 1
alpha = math.pi * alpha / 180
new_matrix = [[a, 0, 0],
[0, b, 0],
[0, c * cos(alpha), c * sin(alpha)]]
if new_matrix is None:
# this if is to treat the case
# where alpha==90 (but we still have a monoclinic sg
new_matrix = [[sorted_lengths[0], 0, 0],
[0, sorted_lengths[1], 0],
[0, 0, sorted_lengths[2]]]
transf = np.zeros(shape=(3, 3))
for c in range(len(sorted_dic)):
transf[c][sorted_dic[c]['orig_index']] = 1
if international_monoclinic:
# The above code makes alpha the non-right angle.
# The following will convert to proper international convention
# that beta is the non-right angle.
op = [[0, 1, 0], [1, 0, 0], [0, 0, -1]]
transf = np.dot(op, transf)
new_matrix = np.dot(op, new_matrix)
beta = Lattice(new_matrix).beta
if beta < 90:
op = [[-1, 0, 0], [0, -1, 0], [0, 0, 1]]
transf = np.dot(op, transf)
new_matrix = np.dot(op, new_matrix)
latt = Lattice(new_matrix)
elif latt_type == "triclinic":
# we use a LLL Minkowski-like reduction for the triclinic cells
struct = struct.get_reduced_structure("LLL")
a, b, c = latt.lengths
alpha, beta, gamma = [math.pi * i / 180 for i in latt.angles]
new_matrix = None
test_matrix = [[a, 0, 0],
[b * cos(gamma), b * sin(gamma), 0.0],
[c * cos(beta),
c * (cos(alpha) - cos(beta) * cos(gamma)) /
sin(gamma),
c * math.sqrt(sin(gamma) ** 2 - cos(alpha) ** 2
- cos(beta) ** 2
+ 2 * cos(alpha) * cos(beta)
* cos(gamma)) / sin(gamma)]]
def is_all_acute_or_obtuse(m):
recp_angles = np.array(Lattice(m).reciprocal_lattice.angles)
return np.all(recp_angles <= 90) or np.all(recp_angles > 90)
if is_all_acute_or_obtuse(test_matrix):
transf = np.eye(3)
new_matrix = test_matrix
test_matrix = [[-a, 0, 0],
[b * cos(gamma), b * sin(gamma), 0.0],
[-c * cos(beta),
-c * (cos(alpha) - cos(beta) * cos(gamma)) /
sin(gamma),
-c * math.sqrt(sin(gamma) ** 2 - cos(alpha) ** 2
- cos(beta) ** 2
+ 2 * cos(alpha) * cos(beta)
* cos(gamma)) / sin(gamma)]]
if is_all_acute_or_obtuse(test_matrix):
transf = [[-1, 0, 0],
[0, 1, 0],
[0, 0, -1]]
new_matrix = test_matrix
test_matrix = [[-a, 0, 0],
[-b * cos(gamma), -b * sin(gamma), 0.0],
[c * cos(beta),
c * (cos(alpha) - cos(beta) * cos(gamma)) /
sin(gamma),
c * math.sqrt(sin(gamma) ** 2 - cos(alpha) ** 2
- cos(beta) ** 2
+ 2 * cos(alpha) * cos(beta)
* cos(gamma)) / sin(gamma)]]
if is_all_acute_or_obtuse(test_matrix):
transf = [[-1, 0, 0],
[0, -1, 0],
[0, 0, 1]]
new_matrix = test_matrix
test_matrix = [[a, 0, 0],
[-b * cos(gamma), -b * sin(gamma), 0.0],
[-c * cos(beta),
-c * (cos(alpha) - cos(beta) * cos(gamma)) /
sin(gamma),
-c * math.sqrt(sin(gamma) ** 2 - cos(alpha) ** 2
- cos(beta) ** 2
+ 2 * cos(alpha) * cos(beta)
* cos(gamma)) / sin(gamma)]]
if is_all_acute_or_obtuse(test_matrix):
transf = [[1, 0, 0],
[0, -1, 0],
[0, 0, -1]]
new_matrix = test_matrix
latt = Lattice(new_matrix)
new_coords = np.dot(transf, np.transpose(struct.frac_coords)).T
new_struct = Structure(latt, struct.species_and_occu, new_coords,
site_properties=struct.site_properties,
to_unit_cell=True)
return new_struct.get_sorted_structure()
[docs] def get_kpoint_weights(self, kpoints, atol=1e-5):
"""
Calculate the weights for a list of kpoints.
Args:
kpoints (Sequence): Sequence of kpoints. np.arrays is fine. Note
that the code does not check that the list of kpoints
provided does not contain duplicates.
atol (float): Tolerance for fractional coordinates comparisons.
Returns:
List of weights, in the SAME order as kpoints.
"""
kpts = np.array(kpoints)
shift = []
mesh = []
for i in range(3):
nonzero = [i for i in kpts[:, i] if abs(i) > 1e-5]
if len(nonzero) != len(kpts):
# gamma centered
if not nonzero:
mesh.append(1)
else:
m = np.abs(np.round(1 / np.array(nonzero)))
mesh.append(int(max(m)))
shift.append(0)
else:
# Monk
m = np.abs(np.round(0.5 / np.array(nonzero)))
mesh.append(int(max(m)))
shift.append(1)
mapping, grid = spglib.get_ir_reciprocal_mesh(
np.array(mesh), self._cell, is_shift=shift, symprec=self._symprec)
mapping = list(mapping)
grid = (np.array(grid) + np.array(shift) * (0.5, 0.5, 0.5)) / mesh
weights = []
mapped = defaultdict(int)
for k in kpoints:
for i, g in enumerate(grid):
if np.allclose(pbc_diff(k, g), (0, 0, 0), atol=atol):
mapped[tuple(g)] += 1
weights.append(mapping.count(mapping[i]))
break
if (len(mapped) != len(set(mapping))) or (
not all([v == 1 for v in mapped.values()])):
raise ValueError("Unable to find 1:1 corresponding between input "
"kpoints and irreducible grid!")
return [w / sum(weights) for w in weights]
[docs] def is_laue(self):
"""
Check if the point group of the structure
has Laue symmetry (centrosymmetry)
"""
laue = ["-1", "2/m", "mmm", "4/m", "4/mmm",
"-3", "-3m", "6/m", "6/mmm", "m-3", "m-3m"]
return str(self.get_point_group_symbol()) in laue
[docs]class PointGroupAnalyzer:
"""
A class to analyze the point group of a molecule. The general outline of
the algorithm is as follows:
1. Center the molecule around its center of mass.
2. Compute the inertia tensor and the eigenvalues and eigenvectors.
3. Handle the symmetry detection based on eigenvalues.
a. Linear molecules have one zero eigenvalue. Possible symmetry
operations are C*v or D*v
b. Asymetric top molecules have all different eigenvalues. The
maximum rotational symmetry in such molecules is 2
c. Symmetric top molecules have 1 unique eigenvalue, which gives a
unique rotation axis. All axial point groups are possible
except the cubic groups (T & O) and I.
d. Spherical top molecules have all three eigenvalues equal. They
have the rare T, O or I point groups.
.. attribute:: sch_symbol
Schoenflies symbol of the detected point group.
"""
inversion_op = SymmOp.inversion()
def __init__(self, mol, tolerance=0.3, eigen_tolerance=0.01,
matrix_tol=0.1):
"""
The default settings are usually sufficient.
Args:
mol (Molecule): Molecule to determine point group for.
tolerance (float): Distance tolerance to consider sites as
symmetrically equivalent. Defaults to 0.3 Angstrom.
eigen_tolerance (float): Tolerance to compare eigen values of
the inertia tensor. Defaults to 0.01.
matrix_tol (float): Tolerance used to generate the full set of
symmetry operations of the point group.
"""
self.mol = mol
self.centered_mol = mol.get_centered_molecule()
self.tol = tolerance
self.eig_tol = eigen_tolerance
self.mat_tol = matrix_tol
self._analyze()
if self.sch_symbol in ["C1v", "C1h"]:
self.sch_symbol = "Cs"
def _analyze(self):
if len(self.centered_mol) == 1:
self.sch_symbol = "Kh"
else:
inertia_tensor = np.zeros((3, 3))
total_inertia = 0
for site in self.centered_mol:
c = site.coords
wt = site.species.weight
for i in range(3):
inertia_tensor[i, i] += wt * (c[(i + 1) % 3] ** 2
+ c[(i + 2) % 3] ** 2)
for i, j in [(0, 1), (1, 2), (0, 2)]:
inertia_tensor[i, j] += -wt * c[i] * c[j]
inertia_tensor[j, i] += -wt * c[j] * c[i]
total_inertia += wt * np.dot(c, c)
# Normalize the inertia tensor so that it does not scale with size
# of the system. This mitigates the problem of choosing a proper
# comparison tolerance for the eigenvalues.
inertia_tensor /= total_inertia
eigvals, eigvecs = np.linalg.eig(inertia_tensor)
self.principal_axes = eigvecs.T
self.eigvals = eigvals
v1, v2, v3 = eigvals
eig_zero = abs(v1 * v2 * v3) < self.eig_tol
eig_all_same = abs(v1 - v2) < self.eig_tol and abs(
v1 - v3) < self.eig_tol
eig_all_diff = abs(v1 - v2) > self.eig_tol and abs(
v1 - v3) > self.eig_tol and abs(v2 - v3) > self.eig_tol
self.rot_sym = []
self.symmops = [SymmOp(np.eye(4))]
if eig_zero:
logger.debug("Linear molecule detected")
self._proc_linear()
elif eig_all_same:
logger.debug("Spherical top molecule detected")
self._proc_sph_top()
elif eig_all_diff:
logger.debug("Asymmetric top molecule detected")
self._proc_asym_top()
else:
logger.debug("Symmetric top molecule detected")
self._proc_sym_top()
def _proc_linear(self):
if self.is_valid_op(PointGroupAnalyzer.inversion_op):
self.sch_symbol = "D*h"
self.symmops.append(PointGroupAnalyzer.inversion_op)
else:
self.sch_symbol = "C*v"
def _proc_asym_top(self):
"""
Handles assymetric top molecules, which cannot contain rotational
symmetry larger than 2.
"""
self._check_R2_axes_asym()
if len(self.rot_sym) == 0:
logger.debug("No rotation symmetries detected.")
self._proc_no_rot_sym()
elif len(self.rot_sym) == 3:
logger.debug("Dihedral group detected.")
self._proc_dihedral()
else:
logger.debug("Cyclic group detected.")
self._proc_cyclic()
def _proc_sym_top(self):
"""
Handles symetric top molecules which has one unique eigenvalue whose
corresponding principal axis is a unique rotational axis. More complex
handling required to look for R2 axes perpendicular to this unique
axis.
"""
if abs(self.eigvals[0] - self.eigvals[1]) < self.eig_tol:
ind = 2
elif abs(self.eigvals[1] - self.eigvals[2]) < self.eig_tol:
ind = 0
else:
ind = 1
logger.debug("Eigenvalues = %s." % self.eigvals)
unique_axis = self.principal_axes[ind]
self._check_rot_sym(unique_axis)
logger.debug("Rotation symmetries = %s" % self.rot_sym)
if len(self.rot_sym) > 0:
self._check_perpendicular_r2_axis(unique_axis)
if len(self.rot_sym) >= 2:
self._proc_dihedral()
elif len(self.rot_sym) == 1:
self._proc_cyclic()
else:
self._proc_no_rot_sym()
def _proc_no_rot_sym(self):
"""
Handles molecules with no rotational symmetry. Only possible point
groups are C1, Cs and Ci.
"""
self.sch_symbol = "C1"
if self.is_valid_op(PointGroupAnalyzer.inversion_op):
self.sch_symbol = "Ci"
self.symmops.append(PointGroupAnalyzer.inversion_op)
else:
for v in self.principal_axes:
mirror_type = self._find_mirror(v)
if not mirror_type == "":
self.sch_symbol = "Cs"
break
def _proc_cyclic(self):
"""
Handles cyclic group molecules.
"""
main_axis, rot = max(self.rot_sym, key=lambda v: v[1])
self.sch_symbol = "C{}".format(rot)
mirror_type = self._find_mirror(main_axis)
if mirror_type == "h":
self.sch_symbol += "h"
elif mirror_type == "v":
self.sch_symbol += "v"
elif mirror_type == "":
if self.is_valid_op(SymmOp.rotoreflection(main_axis,
angle=180 / rot)):
self.sch_symbol = "S{}".format(2 * rot)
def _proc_dihedral(self):
"""
Handles dihedral group molecules, i.e those with intersecting R2 axes
and a main axis.
"""
main_axis, rot = max(self.rot_sym, key=lambda v: v[1])
self.sch_symbol = "D{}".format(rot)
mirror_type = self._find_mirror(main_axis)
if mirror_type == "h":
self.sch_symbol += "h"
elif not mirror_type == "":
self.sch_symbol += "d"
def _check_R2_axes_asym(self):
"""
Test for 2-fold rotation along the principal axes. Used to handle
asymetric top molecules.
"""
for v in self.principal_axes:
op = SymmOp.from_axis_angle_and_translation(v, 180)
if self.is_valid_op(op):
self.symmops.append(op)
self.rot_sym.append((v, 2))
def _find_mirror(self, axis):
"""
Looks for mirror symmetry of specified type about axis. Possible
types are "h" or "vd". Horizontal (h) mirrors are perpendicular to
the axis while vertical (v) or diagonal (d) mirrors are parallel. v
mirrors has atoms lying on the mirror plane while d mirrors do
not.
"""
mirror_type = ""
# First test whether the axis itself is the normal to a mirror plane.
if self.is_valid_op(SymmOp.reflection(axis)):
self.symmops.append(SymmOp.reflection(axis))
mirror_type = "h"
else:
# Iterate through all pairs of atoms to find mirror
for s1, s2 in itertools.combinations(self.centered_mol, 2):
if s1.species == s2.species:
normal = s1.coords - s2.coords
if np.dot(normal, axis) < self.tol:
op = SymmOp.reflection(normal)
if self.is_valid_op(op):
self.symmops.append(op)
if len(self.rot_sym) > 1:
mirror_type = "d"
for v, r in self.rot_sym:
if not np.linalg.norm(v - axis) < self.tol:
if np.dot(v, normal) < self.tol:
mirror_type = "v"
break
else:
mirror_type = "v"
break
return mirror_type
def _get_smallest_set_not_on_axis(self, axis):
"""
Returns the smallest list of atoms with the same species and
distance from origin AND does not lie on the specified axis. This
maximal set limits the possible rotational symmetry operations,
since atoms lying on a test axis is irrelevant in testing rotational
symmetryOperations.
"""
def not_on_axis(site):
v = np.cross(site.coords, axis)
return np.linalg.norm(v) > self.tol
valid_sets = []
origin_site, dist_el_sites = cluster_sites(self.centered_mol, self.tol)
for test_set in dist_el_sites.values():
valid_set = list(filter(not_on_axis, test_set))
if len(valid_set) > 0:
valid_sets.append(valid_set)
return min(valid_sets, key=lambda s: len(s))
def _check_rot_sym(self, axis):
"""
Determines the rotational symmetry about supplied axis. Used only for
symmetric top molecules which has possible rotational symmetry
operations > 2.
"""
min_set = self._get_smallest_set_not_on_axis(axis)
max_sym = len(min_set)
for i in range(max_sym, 0, -1):
if max_sym % i != 0:
continue
op = SymmOp.from_axis_angle_and_translation(axis, 360 / i)
rotvalid = self.is_valid_op(op)
if rotvalid:
self.symmops.append(op)
self.rot_sym.append((axis, i))
return i
return 1
def _check_perpendicular_r2_axis(self, axis):
"""
Checks for R2 axes perpendicular to unique axis. For handling
symmetric top molecules.
"""
min_set = self._get_smallest_set_not_on_axis(axis)
for s1, s2 in itertools.combinations(min_set, 2):
test_axis = np.cross(s1.coords - s2.coords, axis)
if np.linalg.norm(test_axis) > self.tol:
op = SymmOp.from_axis_angle_and_translation(test_axis, 180)
r2present = self.is_valid_op(op)
if r2present:
self.symmops.append(op)
self.rot_sym.append((test_axis, 2))
return True
def _proc_sph_top(self):
"""
Handles Sperhical Top Molecules, which belongs to the T, O or I point
groups.
"""
self._find_spherical_axes()
if len(self.rot_sym) == 0:
logger.debug("Accidental speherical top!")
self._proc_sym_top()
main_axis, rot = max(self.rot_sym, key=lambda v: v[1])
if rot < 3:
logger.debug("Accidental speherical top!")
self._proc_sym_top()
elif rot == 3:
mirror_type = self._find_mirror(main_axis)
if mirror_type != "":
if self.is_valid_op(PointGroupAnalyzer.inversion_op):
self.symmops.append(PointGroupAnalyzer.inversion_op)
self.sch_symbol = "Th"
else:
self.sch_symbol = "Td"
else:
self.sch_symbol = "T"
elif rot == 4:
if self.is_valid_op(PointGroupAnalyzer.inversion_op):
self.symmops.append(PointGroupAnalyzer.inversion_op)
self.sch_symbol = "Oh"
else:
self.sch_symbol = "O"
elif rot == 5:
if self.is_valid_op(PointGroupAnalyzer.inversion_op):
self.symmops.append(PointGroupAnalyzer.inversion_op)
self.sch_symbol = "Ih"
else:
self.sch_symbol = "I"
def _find_spherical_axes(self):
"""
Looks for R5, R4, R3 and R2 axes in spherical top molecules. Point
group T molecules have only one unique 3-fold and one unique 2-fold
axis. O molecules have one unique 4, 3 and 2-fold axes. I molecules
have a unique 5-fold axis.
"""
rot_present = defaultdict(bool)
origin_site, dist_el_sites = cluster_sites(self.centered_mol, self.tol)
test_set = min(dist_el_sites.values(), key=lambda s: len(s))
coords = [s.coords for s in test_set]
for c1, c2, c3 in itertools.combinations(coords, 3):
for cc1, cc2 in itertools.combinations([c1, c2, c3], 2):
if not rot_present[2]:
test_axis = cc1 + cc2
if np.linalg.norm(test_axis) > self.tol:
op = SymmOp.from_axis_angle_and_translation(test_axis,
180)
rot_present[2] = self.is_valid_op(op)
if rot_present[2]:
self.symmops.append(op)
self.rot_sym.append((test_axis, 2))
test_axis = np.cross(c2 - c1, c3 - c1)
if np.linalg.norm(test_axis) > self.tol:
for r in (3, 4, 5):
if not rot_present[r]:
op = SymmOp.from_axis_angle_and_translation(
test_axis, 360 / r)
rot_present[r] = self.is_valid_op(op)
if rot_present[r]:
self.symmops.append(op)
self.rot_sym.append((test_axis, r))
break
if rot_present[2] and rot_present[3] and (
rot_present[4] or rot_present[5]):
break
[docs] def get_pointgroup(self):
"""
Returns a PointGroup object for the molecule.
"""
return PointGroupOperations(self.sch_symbol, self.symmops,
self.mat_tol)
[docs] def get_symmetry_operations(self):
"""
Return symmetry operations as a list of SymmOp objects.
Returns Cartesian coord symmops.
Returns:
([SymmOp]): List of symmetry operations.
"""
return generate_full_symmops(self.symmops, self.tol)
[docs] def is_valid_op(self, symmop):
"""
Check if a particular symmetry operation is a valid symmetry operation
for a molecule, i.e., the operation maps all atoms to another
equivalent atom.
Args:
symmop (SymmOp): Symmetry operation to test.
Returns:
(bool): Whether SymmOp is valid for Molecule.
"""
coords = self.centered_mol.cart_coords
for site in self.centered_mol:
coord = symmop.operate(site.coords)
ind = find_in_coord_list(coords, coord, self.tol)
if not (len(ind) == 1
and self.centered_mol[ind[0]].species
== site.species):
return False
return True
def _get_eq_sets(self):
"""
Calculates the dictionary for mapping equivalent atoms onto each other.
Args:
None
Returns:
dict: The returned dictionary has two possible keys:
``eq_sets``:
A dictionary of indices mapping to sets of indices,
each key maps to indices of all equivalent atoms.
The keys are guaranteed to be not equivalent.
``sym_ops``:
Twofold nested dictionary.
``operations[i][j]`` gives the symmetry operation
that maps atom ``i`` unto ``j``.
"""
UNIT = np.eye(3)
eq_sets, operations = defaultdict(set), defaultdict(dict)
symm_ops = [op.rotation_matrix
for op in generate_full_symmops(self.symmops, self.tol)]
def get_clustered_indices():
indices = cluster_sites(self.centered_mol, self.tol,
give_only_index=True)
out = list(indices[1].values())
if indices[0] is not None:
out.append([indices[0]])
return out
for index in get_clustered_indices():
sites = self.centered_mol.cart_coords[index]
for i, reference in zip(index, sites):
for op in symm_ops:
rotated = np.dot(op, sites.T).T
matched_indices = find_in_coord_list(rotated, reference,
self.tol)
matched_indices = {
dict(enumerate(index))[i] for i in matched_indices}
eq_sets[i] |= matched_indices
if i not in operations:
operations[i] = {j: op.T if j != i else UNIT
for j in matched_indices}
else:
for j in matched_indices:
if j not in operations[i]:
operations[i][j] = op.T if j != i else UNIT
for j in matched_indices:
if j not in operations:
operations[j] = {i: op if j != i else UNIT}
elif i not in operations[j]:
operations[j][i] = op if j != i else UNIT
return {'eq_sets': eq_sets,
'sym_ops': operations}
@staticmethod
def _combine_eq_sets(eq_sets, operations):
"""Combines the dicts of _get_equivalent_atom_dicts into one
Args:
eq_sets (dict)
operations (dict)
Returns:
dict: The returned dictionary has two possible keys:
``eq_sets``:
A dictionary of indices mapping to sets of indices,
each key maps to indices of all equivalent atoms.
The keys are guaranteed to be not equivalent.
``sym_ops``:
Twofold nested dictionary.
``operations[i][j]`` gives the symmetry operation
that maps atom ``i`` unto ``j``.
"""
UNIT = np.eye(3)
def all_equivalent_atoms_of_i(i, eq_sets, ops):
"""WORKS INPLACE on operations
"""
visited = set([i])
tmp_eq_sets = {j: (eq_sets[j] - visited) for j in eq_sets[i]}
while tmp_eq_sets:
new_tmp_eq_sets = {}
for j in tmp_eq_sets:
if j in visited:
continue
visited.add(j)
for k in tmp_eq_sets[j]:
new_tmp_eq_sets[k] = eq_sets[k] - visited
if i not in ops[k]:
ops[k][i] = (np.dot(ops[j][i], ops[k][j])
if k != i else UNIT)
ops[i][k] = ops[k][i].T
tmp_eq_sets = new_tmp_eq_sets
return visited, ops
eq_sets = copy.deepcopy(eq_sets)
ops = copy.deepcopy(operations)
to_be_deleted = set()
for i in eq_sets:
if i in to_be_deleted:
continue
visited, ops = all_equivalent_atoms_of_i(i, eq_sets, ops)
to_be_deleted |= visited - {i}
for k in to_be_deleted:
eq_sets.pop(k, None)
return {'eq_sets': eq_sets,
'sym_ops': ops}
[docs] def get_equivalent_atoms(self):
"""Returns sets of equivalent atoms with symmetry operations
Args:
None
Returns:
dict: The returned dictionary has two possible keys:
``eq_sets``:
A dictionary of indices mapping to sets of indices,
each key maps to indices of all equivalent atoms.
The keys are guaranteed to be not equivalent.
``sym_ops``:
Twofold nested dictionary.
``operations[i][j]`` gives the symmetry operation
that maps atom ``i`` unto ``j``.
"""
eq = self._get_eq_sets()
return self._combine_eq_sets(eq['eq_sets'],
eq['sym_ops'])
[docs] def symmetrize_molecule(self):
"""Returns a symmetrized molecule
The equivalent atoms obtained via
:meth:`~pymatgen.symmetry.analyzer.PointGroupAnalyzer.get_equivalent_atoms`
are rotated, mirrored... unto one position.
Then the average position is calculated.
The average position is rotated, mirrored... back with the inverse
of the previous symmetry operations, which gives the
symmetrized molecule
Args:
None
Returns:
dict: The returned dictionary has three possible keys:
``sym_mol``:
A symmetrized molecule instance.
``eq_sets``:
A dictionary of indices mapping to sets of indices,
each key maps to indices of all equivalent atoms.
The keys are guaranteed to be not equivalent.
``sym_ops``:
Twofold nested dictionary.
``operations[i][j]`` gives the symmetry operation
that maps atom ``i`` unto ``j``.
"""
eq = self.get_equivalent_atoms()
eq_sets, ops = eq['eq_sets'], eq['sym_ops']
coords = self.centered_mol.cart_coords.copy()
for i, eq_indices in eq_sets.items():
for j in eq_indices:
coords[j] = np.dot(ops[j][i], coords[j])
coords[i] = np.mean(coords[list(eq_indices)], axis=0)
for j in eq_indices:
if j == i:
continue
coords[j] = np.dot(ops[i][j], coords[i])
coords[j] = np.dot(ops[i][j], coords[i])
molecule = Molecule(species=self.centered_mol.species_and_occu,
coords=coords)
return {'sym_mol': molecule,
'eq_sets': eq_sets,
'sym_ops': ops}
[docs]def iterative_symmetrize(mol, max_n=10, tolerance=0.3, epsilon=1e-2):
"""Returns a symmetrized molecule
The equivalent atoms obtained via
:meth:`~pymatgen.symmetry.analyzer.PointGroupAnalyzer.get_equivalent_atoms`
are rotated, mirrored... unto one position.
Then the average position is calculated.
The average position is rotated, mirrored... back with the inverse
of the previous symmetry operations, which gives the
symmetrized molecule
Args:
mol (Molecule): A pymatgen Molecule instance.
max_n (int): Maximum number of iterations.
tolerance (float): Tolerance for detecting symmetry.
Gets passed as Argument into
:class:`~pymatgen.analyzer.symmetry.PointGroupAnalyzer`.
epsilon (float): If the elementwise absolute difference of two
subsequently symmetrized structures is smaller epsilon,
the iteration stops before ``max_n`` is reached.
Returns:
dict: The returned dictionary has three possible keys:
``sym_mol``:
A symmetrized molecule instance.
``eq_sets``:
A dictionary of indices mapping to sets of indices,
each key maps to indices of all equivalent atoms.
The keys are guaranteed to be not equivalent.
``sym_ops``:
Twofold nested dictionary.
``operations[i][j]`` gives the symmetry operation
that maps atom ``i`` unto ``j``.
"""
new = mol
n = 0
finished = False
while not finished and n <= max_n:
previous = new
PA = PointGroupAnalyzer(previous, tolerance=tolerance)
eq = PA.symmetrize_molecule()
new = eq['sym_mol']
finished = np.allclose(new.cart_coords, previous.cart_coords,
atol=epsilon)
n += 1
return eq
[docs]def cluster_sites(mol, tol, give_only_index=False):
"""
Cluster sites based on distance and species type.
Args:
mol (Molecule): Molecule **with origin at center of mass**.
tol (float): Tolerance to use.
Returns:
(origin_site, clustered_sites): origin_site is a site at the center
of mass (None if there are no origin atoms). clustered_sites is a
dict of {(avg_dist, species_and_occu): [list of sites]}
"""
# Cluster works for dim > 2 data. We just add a dummy 0 for second
# coordinate.
dists = [[np.linalg.norm(site.coords), 0] for site in mol]
import scipy.cluster as spcluster
f = spcluster.hierarchy.fclusterdata(dists, tol, criterion='distance')
clustered_dists = defaultdict(list)
for i, site in enumerate(mol):
clustered_dists[f[i]].append(dists[i])
avg_dist = {label: np.mean(val) for label, val in clustered_dists.items()}
clustered_sites = defaultdict(list)
origin_site = None
for i, site in enumerate(mol):
if avg_dist[f[i]] < tol:
if give_only_index:
origin_site = i
else:
origin_site = site
else:
if give_only_index:
clustered_sites[
(avg_dist[f[i]], site.species)].append(i)
else:
clustered_sites[
(avg_dist[f[i]], site.species)].append(site)
return origin_site, clustered_sites
[docs]def generate_full_symmops(symmops, tol):
"""
Recursive algorithm to permute through all possible combinations of the
initially supplied symmetry operations to arrive at a complete set of
operations mapping a single atom to all other equivalent atoms in the
point group. This assumes that the initial number already uniquely
identifies all operations.
Args:
symmops ([SymmOp]): Initial set of symmetry operations.
Returns:
Full set of symmetry operations.
"""
# Uses an algorithm described in:
# Gregory Butler. Fundamental Algorithms for Permutation Groups.
# Lecture Notes in Computer Science (Book 559). Springer, 1991. page 15
UNIT = np.eye(4)
generators = [op.affine_matrix for op in symmops
if not np.allclose(op.affine_matrix, UNIT)]
if not generators:
# C1 symmetry breaks assumptions in the algorithm afterwards
return symmops
else:
full = list(generators)
for g in full:
for s in generators:
op = np.dot(g, s)
d = np.abs(full - op) < tol
if not np.any(np.all(np.all(d, axis=2), axis=1)):
full.append(op)
d = np.abs(full - UNIT) < tol
if not np.any(np.all(np.all(d, axis=2), axis=1)):
full.append(UNIT)
return [SymmOp(op) for op in full]
[docs]class SpacegroupOperations(list):
"""
Represents a space group, which is a collection of symmetry operations.
"""
def __init__(self, int_symbol, int_number, symmops):
"""
Args:
int_symbol (str): International symbol of the spacegroup.
int_number (int): International number of the spacegroup.
symmops ([SymmOp]): Symmetry operations associated with the
spacegroup.
"""
self.int_symbol = int_symbol
self.int_number = int_number
super().__init__(symmops)
[docs] def are_symmetrically_equivalent(self, sites1, sites2, symm_prec=1e-3):
"""
Given two sets of PeriodicSites, test if they are actually
symmetrically equivalent under this space group. Useful, for example,
if you want to test if selecting atoms 1 and 2 out of a set of 4 atoms
are symmetrically the same as selecting atoms 3 and 4, etc.
One use is in PartialRemoveSpecie transformation to return only
symmetrically distinct arrangements of atoms.
Args:
sites1 ([PeriodicSite]): 1st set of sites
sites2 ([PeriodicSite]): 2nd set of sites
symm_prec (float): Tolerance in atomic distance to test if atoms
are symmetrically similar.
Returns:
(bool): Whether the two sets of sites are symmetrically
equivalent.
"""
def in_sites(site):
for test_site in sites1:
if test_site.is_periodic_image(site, symm_prec, False):
return True
return False
for op in self:
newsites2 = [PeriodicSite(site.species,
op.operate(site.frac_coords),
site.lattice) for site in sites2]
for site in newsites2:
if not in_sites(site):
break
else:
return True
return False
def __str__(self):
return "{} ({}) spacegroup".format(self.int_symbol, self.int_number)
[docs]class PointGroupOperations(list):
"""
Defines a point group, which is essentially a sequence of symmetry
operations.
.. attribute:: sch_symbol
Schoenflies symbol of the point group.
"""
def __init__(self, sch_symbol, operations, tol=0.1):
"""
Args:
sch_symbol (str): Schoenflies symbol of the point group.
operations ([SymmOp]): Initial set of symmetry operations. It is
sufficient to provide only just enough operations to generate
the full set of symmetries.
tol (float): Tolerance to generate the full set of symmetry
operations.
"""
self.sch_symbol = sch_symbol
super().__init__(
generate_full_symmops(operations, tol))
def __str__(self):
return self.sch_symbol
def __repr__(self):
return self.__str__()