# coding: utf-8
# Copyright (c) Pymatgen Development Team.
# Distributed under the terms of the MIT License.
"""
This module defines classes to represent any type of spectrum, essentially any
x y value pairs.
"""
import numpy as np
from scipy.ndimage.filters import gaussian_filter1d
from monty.json import MSONable
from pymatgen.util.coord import get_linear_interpolated_value
__author__ = "Chen Zheng"
__copyright__ = "Copyright 2012, The Materials Project"
__version__ = "2.0"
__maintainer__ = "Chen Zheng"
__email__ = "chz022@ucsd.edu"
__date__ = "Aug 9, 2017"
[docs]class Spectrum(MSONable):
"""
Base class for any type of xas, essentially just x, y values. Examples
include XRD patterns, XANES, EXAFS, NMR, DOS, etc.
Implements basic tools like application of smearing, normalization, addition
multiplication, etc.
Subclasses should extend this object and ensure that super is called with
ALL args and kwargs. That ensures subsequent things like add and mult work
properly.
"""
XLABEL = "x"
YLABEL = "y"
def __init__(self, x, y, *args, **kwargs):
r"""
Args:
x (ndarray): A ndarray of N values.
y (ndarray): A ndarray of N x k values. The first dimension must be
the same as that of x. Each of the k values are interpreted as
*args: All subclasses should provide args other than x and y
when calling super, e.g., super().__init__(
x, y, arg1, arg2, kwarg1=val1, ..). This guarantees the +, -, *,
etc. operators work properly.
**kwargs: Same as that for *args.
"""
self.x = np.array(x)
self.y = np.array(y)
self.ydim = self.y.shape
if self.x.shape[0] != self.ydim[0]:
raise ValueError("x and y values have different first dimension!")
self._args = args
self._kwargs = kwargs
def __getattr__(self, item):
if item == self.XLABEL.lower():
return self.x
if item == self.YLABEL.lower():
return self.y
raise AttributeError("Invalid attribute name %s" % str(item))
def __len__(self):
return self.ydim[0]
[docs] def normalize(self, mode="max", value=1):
"""
Normalize the spectrum with respect to the sum of intensity
Args:
mode (str): Normalization mode. Supported modes are "max" (set the
max y value to value, e.g., in XRD patterns), "sum" (set the
sum of y to a value, i.e., like a probability density).
value (float): Value to normalize to. Defaults to 1.
"""
if mode.lower() == "sum":
factor = np.sum(self.y, axis=0)
elif mode.lower() == "max":
factor = np.max(self.y, axis=0)
else:
raise ValueError("Unsupported normalization mode %s!" % mode)
self.y /= factor / value
[docs] def smear(self, sigma):
"""
Apply Gaussian smearing to spectrum y value.
Args:
sigma: Std dev for Gaussian smear function
"""
diff = [self.x[i + 1] - self.x[i] for i in range(len(self.x) - 1)]
avg_x_per_step = np.sum(diff) / len(diff)
if len(self.ydim) == 1:
self.y = gaussian_filter1d(self.y, sigma / avg_x_per_step)
else:
self.y = np.array([
gaussian_filter1d(self.y[:, k], sigma / avg_x_per_step)
for k in range(self.ydim[1])]).T
[docs] def get_interpolated_value(self, x):
"""
Returns an interpolated y value for a particular x value.
Args:
x: x value to return the y value for
Returns:
Value of y at x
"""
if len(self.ydim) == 1:
return get_linear_interpolated_value(self.x, self.y, x)
return [get_linear_interpolated_value(self.x, self.y[:, k], x)
for k in range(self.ydim[1])]
[docs] def copy(self):
"""
Returns:
Copy of Spectrum object.
"""
return self.__class__(self.x, self.y, *self._args, **self._kwargs)
def __add__(self, other):
"""
Add two Spectrum object together. Checks that x scales are the same.
Otherwise, a ValueError is thrown.
Args:
other: Another Spectrum object
Returns:
Sum of the two Spectrum objects
"""
if not all(np.equal(self.x, other.x)):
raise ValueError("X axis values are not compatible!")
return self.__class__(self.x, self.y + other.y, *self._args,
**self._kwargs)
def __sub__(self, other):
"""
Substract one Spectrum object from another. Checks that x scales are
the same.
Otherwise, a ValueError is thrown
Args:
other: Another Spectrum object
Returns:
Substraction of the two Spectrum objects
"""
if not all(np.equal(self.x, other.x)):
raise ValueError("X axis values are not compatible!")
return self.__class__(self.x, self.y - other.y, *self._args,
**self._kwargs)
def __mul__(self, other):
"""
Scale the Spectrum's y values
Args:
other: scalar, The scale amount
Returns:
Spectrum object with y values scaled
"""
return self.__class__(self.x, other * self.y, *self._args,
**self._kwargs)
__rmul__ = __mul__
def __truediv__(self, other):
"""
True division of y
Args:
other: The divisor
Returns:
Spectrum object with y values divided
"""
return self.__class__(self.x, self.y.__truediv__(other), *self._args,
**self._kwargs)
def __floordiv__(self, other):
"""
True division of y
Args:
other: The divisor
Returns:
Spectrum object with y values divided
"""
return self.__class__(self.x, self.y.__floordiv__(other), *self._args,
**self._kwargs)
__div__ = __truediv__
def __str__(self):
"""
Returns a string containing values and labels of spectrum object for
plotting.
"""
return "\n".join([self.__class__.__name__,
"%s: %s" % (self.XLABEL, self.x),
"%s: %s" % (self.YLABEL, self.y)])
def __repr__(self):
"""
Returns a printable representation of the class
"""
return self.__str__()