# coding: utf-8
# Copyright (c) Pymatgen Development Team.
# Distributed under the terms of the MIT License.
"""
This module define a WulffShape class to generate the Wulff shape from
a lattice, a list of indices and their corresponding surface energies,
and the total area and volume of the wulff shape,the weighted surface energy,
the anisotropy and shape_factor can also be calculated.
In support of plotting from a given view in terms of miller index.
The lattice is from the conventional unit cell, and (hkil) for hexagonal
lattices.
If you use this code extensively, consider citing the following:
Tran, R.; Xu, Z.; Radhakrishnan, B.; Winston, D.; Persson, K. A.; Ong, S. P.
(2016). Surface energies of elemental crystals. Scientific Data.
"""
from pymatgen.core.structure import Structure
from pymatgen.util.coord import get_angle
import numpy as np
from scipy.spatial import ConvexHull
import logging
import warnings
import itertools
import plotly.graph_objs as go
from pymatgen.util.string import unicodeify_spacegroup
__author__ = 'Zihan Xu, Richard Tran, Shyue Ping Ong'
__copyright__ = 'Copyright 2013, The Materials Virtual Lab'
__version__ = '0.1'
__maintainer__ = 'Zihan Xu'
__email__ = 'zix009@eng.ucsd.edu'
__date__ = 'May 5 2016'
logger = logging.getLogger(__name__)
[docs]def hkl_tuple_to_str(hkl):
"""
Prepare for display on plots
"(hkl)" for surfaces
Agrs:
hkl: in the form of [h, k, l] or (h, k, l)
"""
str_format = '($'
for x in hkl:
if x < 0:
str_format += '\\overline{' + str(-x) + '}'
else:
str_format += str(x)
str_format += '$)'
return str_format
[docs]def get_tri_area(pts):
"""
Given a list of coords for 3 points,
Compute the area of this triangle.
Args:
pts: [a, b, c] three points
"""
a, b, c = pts[0], pts[1], pts[2]
v1 = np.array(b) - np.array(a)
v2 = np.array(c) - np.array(a)
area_tri = abs(np.linalg.norm(np.cross(v1, v2)) / 2)
return area_tri
[docs]class WulffFacet:
"""
Helper container for each Wulff plane.
"""
def __init__(self, normal, e_surf, normal_pt, dual_pt, index, m_ind_orig,
miller):
"""
:param normal:
:param e_surf:
:param normal_pt:
:param dual_pt:
:param index:
:param m_ind_orig:
:param miller:
"""
self.normal = normal
self.e_surf = e_surf
self.normal_pt = normal_pt
self.dual_pt = dual_pt
self.index = index
self.m_ind_orig = m_ind_orig
self.miller = miller
self.points = []
self.outer_lines = []
[docs]class WulffShape:
"""
Generate Wulff Shape from list of miller index and surface energies,
with given conventional unit cell.
surface energy (Jm^2) is the length of normal.
Wulff shape is the convex hull.
Based on:
http://scipy.github.io/devdocs/generated/scipy.spatial.ConvexHull.html
Process:
1. get wulff simplices
2. label with color
3. get wulff_area and other properties
.. attribute:: debug (bool)
.. attribute:: alpha
transparency
.. attribute:: color_set
.. attribute:: grid_off (bool)
.. attribute:: axis_off (bool)
.. attribute:: show_area
.. attribute:: off_color
color of facets off wulff
.. attribute:: structure
Structure object, input conventional unit cell (with H ) from lattice
.. attribute:: miller_list
list of input miller index, for hcp in the form of hkil
.. attribute:: hkl_list
modify hkill to hkl, in the same order with input_miller
.. attribute:: e_surf_list
list of input surface energies, in the same order with input_miller
.. attribute:: lattice
Lattice object, the input lattice for the conventional unit cell
.. attribute:: facets
[WulffFacet] for all facets considering symm
.. attribute:: dual_cv_simp
simplices from the dual convex hull (dual_pt)
.. attribute:: wulff_pt_list
.. attribute:: wulff_cv_simp
simplices from the convex hull of wulff_pt_list
.. attribute:: on_wulff
list for all input_miller, True is on wulff.
.. attribute:: color_area
list for all input_miller, total area on wulff, off_wulff = 0.
.. attribute:: miller_area
($hkl$): area for all input_miller
"""
def __init__(self, lattice, miller_list, e_surf_list, symprec=1e-5):
"""
Args:
lattice: Lattice object of the conventional unit cell
miller_list ([(hkl), ...]: list of hkl or hkil for hcp
e_surf_list ([float]): list of corresponding surface energies
symprec (float): for recp_operation, default is 1e-5.
"""
if any([se < 0 for se in e_surf_list]):
warnings.warn("Unphysical (negative) surface energy detected.")
self.color_ind = list(range(len(miller_list)))
self.input_miller_fig = [hkl_tuple_to_str(x) for x in miller_list]
# store input data
self.structure = Structure(lattice, ["H"], [[0, 0, 0]])
self.miller_list = tuple([tuple(x) for x in miller_list])
self.hkl_list = tuple([(x[0], x[1], x[-1]) for x in miller_list])
self.e_surf_list = tuple(e_surf_list)
self.lattice = lattice
self.symprec = symprec
# 2. get all the data for wulff construction
# get all the surface normal from get_all_miller_e()
self.facets = self._get_all_miller_e()
logger.debug(len(self.facets))
# 3. consider the dual condition
dual_pts = [x.dual_pt for x in self.facets]
dual_convex = ConvexHull(dual_pts)
dual_cv_simp = dual_convex.simplices
# simplices (ndarray of ints, shape (nfacet, ndim))
# list of [i, j, k] , ndim = 3
# i, j, k: ind for normal_e_m
# recalculate the dual of dual, get the wulff shape.
# conner <-> surface
# get cross point from the simplices of the dual convex hull
wulff_pt_list = [self._get_cross_pt_dual_simp(dual_simp)
for dual_simp in dual_cv_simp]
wulff_convex = ConvexHull(wulff_pt_list)
wulff_cv_simp = wulff_convex.simplices
logger.debug(", ".join([str(len(x)) for x in wulff_cv_simp]))
# store simplices and convex
self.dual_cv_simp = dual_cv_simp
self.wulff_pt_list = wulff_pt_list
self.wulff_cv_simp = wulff_cv_simp
self.wulff_convex = wulff_convex
self.on_wulff, self.color_area = self._get_simpx_plane()
miller_area = []
for m, in_mill_fig in enumerate(self.input_miller_fig):
miller_area.append(
in_mill_fig + ' : ' + str(round(self.color_area[m], 4)))
self.miller_area = miller_area
def _get_all_miller_e(self):
"""
from self:
get miller_list(unique_miller), e_surf_list and symmetry
operations(symmops) according to lattice
apply symmops to get all the miller index, then get normal,
get all the facets functions for wulff shape calculation:
|normal| = 1, e_surf is plane's distance to (0, 0, 0),
normal[0]x + normal[1]y + normal[2]z = e_surf
return:
[WulffFacet]
"""
all_hkl = []
color_ind = self.color_ind
planes = []
recp = self.structure.lattice.reciprocal_lattice_crystallographic
recp_symmops = self.lattice.get_recp_symmetry_operation(self.symprec)
for i, (hkl, energy) in enumerate(zip(self.hkl_list,
self.e_surf_list)):
for op in recp_symmops:
miller = tuple([int(x) for x in op.operate(hkl)])
if miller not in all_hkl:
all_hkl.append(miller)
normal = recp.get_cartesian_coords(miller)
normal /= np.linalg.norm(normal)
normal_pt = [x * energy for x in normal]
dual_pt = [x / energy for x in normal]
color_plane = color_ind[divmod(i, len(color_ind))[1]]
planes.append(WulffFacet(normal, energy, normal_pt,
dual_pt, color_plane, i, hkl))
# sort by e_surf
planes.sort(key=lambda x: x.e_surf)
return planes
def _get_cross_pt_dual_simp(self, dual_simp):
"""
|normal| = 1, e_surf is plane's distance to (0, 0, 0),
plane function:
normal[0]x + normal[1]y + normal[2]z = e_surf
from self:
normal_e_m to get the plane functions
dual_simp: (i, j, k) simplices from the dual convex hull
i, j, k: plane index(same order in normal_e_m)
"""
matrix_surfs = [self.facets[dual_simp[i]].normal for i in range(3)]
matrix_e = [self.facets[dual_simp[i]].e_surf for i in range(3)]
cross_pt = np.dot(np.linalg.inv(matrix_surfs), matrix_e)
return cross_pt
def _get_simpx_plane(self):
"""
Locate the plane for simpx of on wulff_cv, by comparing the center of
the simpx triangle with the plane functions.
"""
on_wulff = [False] * len(self.miller_list)
surface_area = [0.0] * len(self.miller_list)
for simpx in self.wulff_cv_simp:
pts = [self.wulff_pt_list[simpx[i]] for i in range(3)]
center = np.sum(pts, 0) / 3.0
# check whether the center of the simplices is on one plane
for plane in self.facets:
abs_diff = abs(np.dot(plane.normal, center) - plane.e_surf)
if abs_diff < 1e-5:
on_wulff[plane.index] = True
surface_area[plane.index] += get_tri_area(pts)
plane.points.append(pts)
plane.outer_lines.append([simpx[0], simpx[1]])
plane.outer_lines.append([simpx[1], simpx[2]])
plane.outer_lines.append([simpx[0], simpx[2]])
# already find the plane, move to the next simplices
break
for plane in self.facets:
plane.outer_lines.sort()
plane.outer_lines = [line for line in plane.outer_lines
if plane.outer_lines.count(line) != 2]
return on_wulff, surface_area
def _get_colors(self, color_set, alpha, off_color, custom_colors={}):
"""
assign colors according to the surface energies of on_wulff facets.
return:
(color_list, color_proxy, color_proxy_on_wulff, miller_on_wulff,
e_surf_on_wulff_list)
"""
import matplotlib as mpl
import matplotlib.pyplot as plt
color_list = [off_color] * len(self.hkl_list)
color_proxy_on_wulff = []
miller_on_wulff = []
e_surf_on_wulff = [(i, e_surf)
for i, e_surf in enumerate(self.e_surf_list)
if self.on_wulff[i]]
c_map = plt.get_cmap(color_set)
e_surf_on_wulff.sort(key=lambda x: x[1], reverse=False)
e_surf_on_wulff_list = [x[1] for x in e_surf_on_wulff]
if len(e_surf_on_wulff) > 1:
cnorm = mpl.colors.Normalize(vmin=min(e_surf_on_wulff_list),
vmax=max(e_surf_on_wulff_list))
else:
# if there is only one hkl on wulff, choose the color of the median
cnorm = mpl.colors.Normalize(vmin=min(e_surf_on_wulff_list) - 0.1,
vmax=max(e_surf_on_wulff_list) + 0.1)
scalar_map = mpl.cm.ScalarMappable(norm=cnorm, cmap=c_map)
for i, e_surf in e_surf_on_wulff:
color_list[i] = scalar_map.to_rgba(e_surf, alpha=alpha)
if tuple(self.miller_list[i]) in custom_colors.keys():
color_list[i] = custom_colors[tuple(self.miller_list[i])]
color_proxy_on_wulff.append(
plt.Rectangle((2, 2), 1, 1, fc=color_list[i], alpha=alpha))
miller_on_wulff.append(self.input_miller_fig[i])
scalar_map.set_array([x[1] for x in e_surf_on_wulff])
color_proxy = [plt.Rectangle((2, 2), 1, 1, fc=x, alpha=alpha)
for x in color_list]
return color_list, color_proxy, color_proxy_on_wulff, miller_on_wulff, e_surf_on_wulff_list
[docs] def show(self, *args, **kwargs):
r"""
Show the Wulff plot.
Args:
*args: Passed to get_plot.
**kwargs: Passed to get_plot.
"""
self.get_plot(*args, **kwargs).show()
[docs] def get_line_in_facet(self, facet):
"""
Returns the sorted pts in a facet used to draw a line
"""
lines = list(facet.outer_lines)
pt = []
prev = None
while len(lines) > 0:
if prev is None:
l = lines.pop(0)
else:
for i, l in enumerate(lines):
if prev in l:
l = lines.pop(i)
if l[1] == prev:
l.reverse()
break
# make sure the lines are connected one by one.
# find the way covering all pts and facets
pt.append(self.wulff_pt_list[l[0]].tolist())
pt.append(self.wulff_pt_list[l[1]].tolist())
prev = l[1]
return pt
[docs] def get_plot(self, color_set='PuBu', grid_off=True, axis_off=True,
show_area=False, alpha=1, off_color='red', direction=None,
bar_pos=(0.75, 0.15, 0.05, 0.65), bar_on=False, units_in_JPERM2=True,
legend_on=True, aspect_ratio=(8, 8), custom_colors={}):
"""
Get the Wulff shape plot.
Args:
color_set: default is 'PuBu'
grid_off (bool): default is True
axis_off (bool): default is Ture
show_area (bool): default is False
alpha (float): chosen from 0 to 1 (float), default is 1
off_color: Default color for facets not present on the Wulff shape.
direction: default is (1, 1, 1)
bar_pos: default is [0.75, 0.15, 0.05, 0.65]
bar_on (bool): default is False
legend_on (bool): default is True
aspect_ratio: default is (8, 8)
custom_colors ({(h,k,l}: [r,g,b,alpha}): Customize color of each
facet with a dictionary. The key is the corresponding Miller
index and value is the color. Undefined facets will use default
color site. Note: If you decide to set your own colors, it
probably won't make any sense to have the color bar on.
units_in_JPERM2 (bool): Units of surface energy, defaults to
Joules per square meter (True)
Return:
(matplotlib.pyplot)
"""
import matplotlib as mpl
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d as mpl3
color_list, color_proxy, color_proxy_on_wulff, miller_on_wulff, e_surf_on_wulff = self._get_colors(
color_set, alpha, off_color, custom_colors=custom_colors)
if not direction:
# If direction is not specified, use the miller indices of
# maximum area.
direction = max(self.area_fraction_dict.items(),
key=lambda x: x[1])[0]
fig = plt.figure()
fig.set_size_inches(aspect_ratio[0], aspect_ratio[1])
azim, elev = self._get_azimuth_elev([direction[0], direction[1],
direction[-1]])
wulff_pt_list = self.wulff_pt_list
ax = mpl3.Axes3D(fig, azim=azim, elev=elev)
for plane in self.facets:
# check whether [pts] is empty
if len(plane.points) < 1:
# empty, plane is not on_wulff.
continue
# assign the color for on_wulff facets according to its
# index and the color_list for on_wulff
plane_color = color_list[plane.index]
pt = self.get_line_in_facet(plane)
# plot from the sorted pts from [simpx]
tri = mpl3.art3d.Poly3DCollection([pt])
tri.set_color(plane_color)
tri.set_edgecolor("#808080")
ax.add_collection3d(tri)
# set ranges of x, y, z
# find the largest distance between on_wulff pts and the origin,
# to ensure complete and consistent display for all directions
r_range = max([np.linalg.norm(x) for x in wulff_pt_list])
ax.set_xlim([-r_range * 1.1, r_range * 1.1])
ax.set_ylim([-r_range * 1.1, r_range * 1.1])
ax.set_zlim([-r_range * 1.1, r_range * 1.1])
# add legend
if legend_on:
color_proxy = color_proxy
if show_area:
ax.legend(color_proxy, self.miller_area, loc='upper left',
bbox_to_anchor=(0, 1), fancybox=True, shadow=False)
else:
ax.legend(color_proxy_on_wulff, miller_on_wulff,
loc='upper center',
bbox_to_anchor=(0.5, 1), ncol=3, fancybox=True,
shadow=False)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
# Add colorbar
if bar_on:
cmap = plt.get_cmap(color_set)
cmap.set_over('0.25')
cmap.set_under('0.75')
bounds = [round(e, 2) for e in e_surf_on_wulff]
bounds.append(1.2 * bounds[-1])
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
# display surface energies
ax1 = fig.add_axes(bar_pos)
cbar = mpl.colorbar.ColorbarBase(
ax1, cmap=cmap, norm=norm, boundaries=[0] + bounds + [10],
extend='both', ticks=bounds[:-1], spacing='proportional',
orientation='vertical')
units = "$J/m^2$" if units_in_JPERM2 else r"$eV/\AA^2$"
cbar.set_label('Surface Energies (%s)' % (units), fontsize=25)
if grid_off:
ax.grid('off')
if axis_off:
ax.axis('off')
return plt
[docs] def get_plotly(self, color_set='PuBu', off_color='red',
alpha=1, custom_colors={}, units_in_JPERM2=True):
"""
Get the Wulff shape as a plotly Figure object.
Args:
color_set: default is 'PuBu'
alpha (float): chosen from 0 to 1 (float), default is 1
off_color: Default color for facets not present on the Wulff shape.
custom_colors ({(h,k,l}: [r,g,b,alpha}): Customize color of each
facet with a dictionary. The key is the corresponding Miller
index and value is the color. Undefined facets will use default
color site. Note: If you decide to set your own colors, it
probably won't make any sense to have the color bar on.
units_in_JPERM2 (bool): Units of surface energy, defaults to
Joules per square meter (True)
Return:
(plotly.graph_objs.Figure)
"""
units = 'Jm⁻²' if units_in_JPERM2 else 'eVÅ⁻²'
color_list, color_proxy, color_proxy_on_wulff, \
miller_on_wulff, e_surf_on_wulff = self. \
_get_colors(color_set, alpha, off_color,
custom_colors=custom_colors)
planes_data, color_scale, ticktext, tickvals = [], [], [], []
for plane in self.facets:
if len(plane.points) < 1:
# empty, plane is not on_wulff.
continue
plane_color = color_list[plane.index]
plane_color = (1, 0, 0, 1) if plane_color == off_color else plane_color # set to red for now
pt = self.get_line_in_facet(plane)
x_pts, y_pts, z_pts = [], [], []
for p in pt:
x_pts.append(p[0])
y_pts.append(p[1])
z_pts.append(p[2])
# remove duplicate x y z pts to save time
all_xyz = []
[all_xyz.append(list(coord)) for coord in np.array([x_pts, y_pts, z_pts]).T
if list(coord) not in all_xyz]
x_pts, y_pts, z_pts = np.array(all_xyz).T[0], np.array(all_xyz).T[1], np.array(all_xyz).T[2]
index_list = [int(i) for i in np.linspace(0, len(x_pts) - 1, len(x_pts))]
tri_indices = np.array([c for c in itertools.combinations(index_list, 3)]).T
hkl = self.miller_list[plane.index]
hkl = unicodeify_spacegroup('(' + '%s' * len(hkl) % hkl + ')')
color = 'rgba(%.5f, %.5f, %.5f, %.5f)' % tuple(np.array(plane_color) * 255)
# note hoverinfo is incompatible with latex, need unicode instead
planes_data.append(go.Mesh3d(x=x_pts, y=y_pts, z=z_pts,
i=tri_indices[0], j=tri_indices[1], k=tri_indices[2],
hovertemplate="<br>%{text}<br>" +
"%s=%.3f %s<br>" % (u"\u03b3", plane.e_surf,
units),
color=color, text=[r'Miller index: %s'
% hkl] * len(x_pts),
hoverinfo='name', name=''))
# normalize surface energy from a scale of 0 to 1 for colorbar
norm_e = (plane.e_surf-min(e_surf_on_wulff))/(max(e_surf_on_wulff) - min(e_surf_on_wulff))
c = [norm_e, color]
if c not in color_scale:
color_scale.append(c)
ticktext.append("%.3f" % plane.e_surf)
tickvals.append(norm_e)
# Add colorbar
color_scale = sorted(color_scale, key=lambda c: c[0])
colorbar = go.Mesh3d(x=[0], y=[0], z=[0],
colorbar=go.ColorBar(title={'text': r'Surface energy %s' % units,
'side': 'right',
'font': {'size': 25}},
ticktext=ticktext, tickvals=tickvals),
colorscale=[[0, 'rgb(255,255,255, 255)']] + color_scale, # fix the scale
intensity=[0, 0.33, 0.66, 1], i=[0],
j=[0], k=[0], name='y', showscale=True)
planes_data.append(colorbar)
# Format aesthetics: background, axis, etc.
axis_dict = dict(title='', autorange=True, showgrid=False,
zeroline=False, ticks="", showline=False,
showticklabels=False, showbackground=False)
fig = go.Figure(data=planes_data)
fig.update_layout(dict(showlegend=True, scene=dict(xaxis=axis_dict,
yaxis=axis_dict,
zaxis=axis_dict)))
return fig
def _get_azimuth_elev(self, miller_index):
"""
Args:
miller_index: viewing direction
Returns:
azim, elev for plotting
"""
if miller_index == (0, 0, 1) or miller_index == (0, 0, 0, 1):
return 0, 90
else:
cart = self.lattice.get_cartesian_coords(miller_index)
azim = get_angle([cart[0], cart[1], 0], (1, 0, 0))
v = [cart[0], cart[1], 0]
elev = get_angle(cart, v)
return azim, elev
@property
def volume(self):
"""
Volume of the Wulff shape
"""
return self.wulff_convex.volume
@property
def miller_area_dict(self):
"""
Returns {hkl: area_hkl on wulff}
"""
return dict(zip(self.miller_list, self.color_area))
@property
def miller_energy_dict(self):
"""
Returns {hkl: surface energy_hkl}
"""
return dict(zip(self.miller_list, self.e_surf_list))
@property
def surface_area(self):
"""
Total surface area of Wulff shape.
"""
return sum(self.miller_area_dict.values())
@property
def weighted_surface_energy(self):
"""
Returns:
sum(surface_energy_hkl * area_hkl)/ sum(area_hkl)
"""
return self.total_surface_energy / self.surface_area
@property
def area_fraction_dict(self):
"""
Returns:
(dict): {hkl: area_hkl/total area on wulff}
"""
return {hkl: self.miller_area_dict[hkl] / self.surface_area
for hkl in self.miller_area_dict.keys()}
@property
def anisotropy(self):
"""
Returns:
(float) Coefficient of Variation from weighted surface energy
The ideal sphere is 0.
"""
square_diff_energy = 0
weighted_energy = self.weighted_surface_energy
area_frac_dict = self.area_fraction_dict
miller_energy_dict = self.miller_energy_dict
for hkl in miller_energy_dict.keys():
square_diff_energy += (miller_energy_dict[hkl] - weighted_energy) \
** 2 * area_frac_dict[hkl]
return np.sqrt(square_diff_energy) / weighted_energy
@property
def shape_factor(self):
"""
This is useful for determining the critical nucleus size.
A large shape factor indicates great anisotropy.
See Ballufi, R. W., Allen, S. M. & Carter, W. C. Kinetics
of Materials. (John Wiley & Sons, 2005), p.461
Returns:
(float) Shape factor.
"""
return self.surface_area / (self.volume ** (2 / 3))
@property
def effective_radius(self):
"""
Radius of the Wulffshape when the
Wulffshape is approximated as a sphere.
Returns:
(float) radius.
"""
return ((3 / 4) * (self.volume / np.pi)) ** (1 / 3)
@property
def total_surface_energy(self):
"""
Total surface energy of the Wulff shape.
Returns:
(float) sum(surface_energy_hkl * area_hkl)
"""
tot_surface_energy = 0
for hkl in self.miller_energy_dict.keys():
tot_surface_energy += self.miller_energy_dict[hkl] * \
self.miller_area_dict[hkl]
return tot_surface_energy
@property
def tot_corner_sites(self):
"""
Returns the number of vertices in the convex hull.
Useful for identifying catalytically active sites.
"""
return len(self.wulff_convex.vertices)
@property
def tot_edges(self):
"""
Returns the number of edges in the convex hull.
Useful for identifying catalytically active sites.
"""
all_edges = []
for facet in self.facets:
edges = []
pt = self.get_line_in_facet(facet)
lines = []
for i, p in enumerate(pt):
if i == len(pt) / 2:
break
lines.append(tuple(sorted(tuple([tuple(pt[i * 2]), tuple(pt[i * 2 + 1])]))))
for i, p in enumerate(lines):
if p not in all_edges:
edges.append(p)
all_edges.extend(edges)
return len(all_edges)