# coding: utf-8
# Copyright (c) Pymatgen Development Team.
# Distributed under the terms of the MIT License.
"""
Some reimplementation of Henkelman's Transition State Analysis utilities,
which are originally in Perl. Additional features beyond those offered by
Henkelman's utilities will be added.
This allows the usage and customization in Python.
"""
import os
import glob
import numpy as np
from monty.json import jsanitize
from monty.json import MSONable
from pymatgen.util.plotting import pretty_plot
from pymatgen.io.vasp import Poscar, Outcar
from pymatgen.analysis.structure_matcher import StructureMatcher
scipy_old_piecewisepolynomial = True
try:
from scipy.interpolate import PiecewisePolynomial
except ImportError:
from scipy.interpolate import CubicSpline
scipy_old_piecewisepolynomial = False
__author__ = 'Shyue Ping Ong'
__copyright__ = 'Copyright 2013, The Materials Virtual Lab'
__version__ = '0.1'
__maintainer__ = 'Shyue Ping Ong'
__email__ = 'ongsp@ucsd.edu'
__date__ = '6/1/15'
[docs]class NEBAnalysis(MSONable):
"""
An NEBAnalysis class.
"""
def __init__(self, r, energies, forces, structures, spline_options=None):
"""
Initializes an NEBAnalysis from the cumulative root mean squared distances
between structures, the energies, the forces, the structures and the
interpolation_order for the analysis.
Args:
r: Root mean square distances between structures
energies: Energies of each structure along reaction coordinate
forces: Tangent forces along the reaction coordinate.
structures ([Structure]): List of Structures along reaction
coordinate.
spline_options (dict): Options for cubic spline. For example,
{"saddle_point": "zero_slope"} forces the slope at the saddle to
be zero.
"""
self.r = np.array(r)
self.energies = np.array(energies)
self.forces = np.array(forces)
self.structures = structures
self.spline_options = spline_options if spline_options is not None \
else {}
# We do a piecewise interpolation between the points. Each spline (
# cubic by default) is constrained by the boundary conditions of the
# energies and the tangent force, i.e., the derivative of
# the energy at each pair of points.
self.setup_spline(spline_options=self.spline_options)
[docs] def setup_spline(self, spline_options=None):
"""
Setup of the options for the spline interpolation
Args:
spline_options (dict): Options for cubic spline. For example,
{"saddle_point": "zero_slope"} forces the slope at the saddle to
be zero.
"""
self.spline_options = spline_options
relative_energies = self.energies - self.energies[0]
if scipy_old_piecewisepolynomial:
if self.spline_options:
raise RuntimeError('Option for saddle point not available with'
'old scipy implementation')
self.spline = PiecewisePolynomial(
self.r, np.array([relative_energies, -self.forces]).T,
orders=3)
else:
# New scipy implementation for scipy > 0.18.0
if self.spline_options.get('saddle_point', '') == 'zero_slope':
imax = np.argmax(relative_energies)
self.spline = CubicSpline(x=self.r[:imax + 1],
y=relative_energies[:imax + 1],
bc_type=((1, 0.0), (1, 0.0)))
cspline2 = CubicSpline(x=self.r[imax:], y=relative_energies[imax:],
bc_type=((1, 0.0), (1, 0.0)))
self.spline.extend(c=cspline2.c, x=cspline2.x[1:])
else:
self.spline = CubicSpline(x=self.r, y=relative_energies,
bc_type=((1, 0.0), (1, 0.0)))
[docs] @classmethod
def from_outcars(cls, outcars, structures, **kwargs):
"""
Initializes an NEBAnalysis from Outcar and Structure objects. Use
the static constructors, e.g., :class:`from_dir` instead if you
prefer to have these automatically generated from a directory of NEB
calculations.
Args:
outcars ([Outcar]): List of Outcar objects. Note that these have
to be ordered from start to end along reaction coordinates.
structures ([Structure]): List of Structures along reaction
coordinate. Must be same length as outcar.
interpolation_order (int): Order of polynomial to use to
interpolate between images. Same format as order parameter in
scipy.interplotate.PiecewisePolynomial.
"""
if len(outcars) != len(structures):
raise ValueError("# of Outcars must be same as # of Structures")
# Calculate cumulative root mean square distance between structures,
# which serves as the reaction coordinate. Note that these are
# calculated from the final relaxed structures as the coordinates may
# have changed from the initial interpolation.
r = [0]
prev = structures[0]
for st in structures[1:]:
dists = np.array([s2.distance(s1) for s1, s2 in zip(prev, st)])
r.append(np.sqrt(np.sum(dists ** 2)))
prev = st
r = np.cumsum(r)
energies = []
forces = []
for i, o in enumerate(outcars):
o.read_neb()
energies.append(o.data["energy"])
if i in [0, len(outcars) - 1]:
forces.append(0)
else:
forces.append(o.data["tangent_force"])
forces = np.array(forces)
r = np.array(r)
return cls(r=r, energies=energies, forces=forces,
structures=structures, **kwargs)
[docs] def get_extrema(self, normalize_rxn_coordinate=True):
"""
Returns the positions of the extrema along the MEP. Both local
minimums and maximums are returned.
Args:
normalize_rxn_coordinate (bool): Whether to normalize the
reaction coordinate to between 0 and 1. Defaults to True.
Returns:
(min_extrema, max_extrema), where the extrema are given as
[(x1, y1), (x2, y2), ...].
"""
x = np.arange(0, np.max(self.r), 0.01)
y = self.spline(x) * 1000
scale = 1 if not normalize_rxn_coordinate else 1 / self.r[-1]
min_extrema = []
max_extrema = []
for i in range(1, len(x) - 1):
if y[i] < y[i - 1] and y[i] < y[i + 1]:
min_extrema.append((x[i] * scale, y[i]))
elif y[i] > y[i - 1] and y[i] > y[i + 1]:
max_extrema.append((x[i] * scale, y[i]))
return min_extrema, max_extrema
[docs] def get_plot(self, normalize_rxn_coordinate=True, label_barrier=True):
"""
Returns the NEB plot. Uses Henkelman's approach of spline fitting
each section of the reaction path based on tangent force and energies.
Args:
normalize_rxn_coordinate (bool): Whether to normalize the
reaction coordinate to between 0 and 1. Defaults to True.
label_barrier (bool): Whether to label the maximum barrier.
Returns:
matplotlib.pyplot object.
"""
plt = pretty_plot(12, 8)
scale = 1 if not normalize_rxn_coordinate else 1 / self.r[-1]
x = np.arange(0, np.max(self.r), 0.01)
y = self.spline(x) * 1000
relative_energies = self.energies - self.energies[0]
plt.plot(self.r * scale, relative_energies * 1000, 'ro',
x * scale, y, 'k-', linewidth=2, markersize=10)
plt.xlabel("Reaction coordinate")
plt.ylabel("Energy (meV)")
plt.ylim((np.min(y) - 10, np.max(y) * 1.02 + 20))
if label_barrier:
data = zip(x * scale, y)
barrier = max(data, key=lambda d: d[1])
plt.plot([0, barrier[0]], [barrier[1], barrier[1]], 'k--')
plt.annotate('%.0f meV' % (np.max(y) - np.min(y)),
xy=(barrier[0] / 2, barrier[1] * 1.02),
xytext=(barrier[0] / 2, barrier[1] * 1.02),
horizontalalignment='center')
plt.tight_layout()
return plt
[docs] @classmethod
def from_dir(cls, root_dir, relaxation_dirs=None, **kwargs):
"""
Initializes a NEBAnalysis object from a directory of a NEB run.
Note that OUTCARs must be present in all image directories. For the
terminal OUTCARs from relaxation calculations, you can specify the
locations using relaxation_dir. If these are not specified, the code
will attempt to look for the OUTCARs in 00 and 0n directories,
followed by subdirs "start", "end" or "initial", "final" in the
root_dir. These are just some typical conventions used
preferentially in Shyue Ping's MAVRL research group. For the
non-terminal points, the CONTCAR is read to obtain structures. For
terminal points, the POSCAR is used. The image directories are
assumed to be the only directories that can be resolved to integers.
E.g., "00", "01", "02", "03", "04", "05", "06". The minimum
sub-directory structure that can be parsed is of the following form (
a 5-image example is shown):
00:
- POSCAR
- OUTCAR
01, 02, 03, 04, 05:
- CONTCAR
- OUTCAR
06:
- POSCAR
- OUTCAR
Args:
root_dir (str): Path to the root directory of the NEB calculation.
relaxation_dirs (tuple): This specifies the starting and ending
relaxation directories from which the OUTCARs are read for the
terminal points for the energies.
Returns:
NEBAnalysis object.
"""
neb_dirs = []
for d in os.listdir(root_dir):
pth = os.path.join(root_dir, d)
if os.path.isdir(pth) and d.isdigit():
i = int(d)
neb_dirs.append((i, pth))
neb_dirs = sorted(neb_dirs, key=lambda d: d[0])
outcars = []
structures = []
# Setup the search sequence for the OUTCARs for the terminal
# directories.
terminal_dirs = []
if relaxation_dirs is not None:
terminal_dirs.append(relaxation_dirs)
terminal_dirs.append((neb_dirs[0][1], neb_dirs[-1][1]))
terminal_dirs.append([os.path.join(root_dir, d)
for d in ["start", "end"]])
terminal_dirs.append([os.path.join(root_dir, d)
for d in ["initial", "final"]])
for i, d in neb_dirs:
outcar = glob.glob(os.path.join(d, "OUTCAR*"))
contcar = glob.glob(os.path.join(d, "CONTCAR*"))
poscar = glob.glob(os.path.join(d, "POSCAR*"))
terminal = i == 0 or i == neb_dirs[-1][0]
if terminal:
for ds in terminal_dirs:
od = ds[0] if i == 0 else ds[1]
outcar = glob.glob(os.path.join(od, "OUTCAR*"))
if outcar:
outcar = sorted(outcar)
outcars.append(Outcar(outcar[-1]))
break
else:
raise ValueError("OUTCAR cannot be found for terminal "
"point %s" % d)
structures.append(Poscar.from_file(poscar[0]).structure)
else:
outcars.append(Outcar(outcar[0]))
structures.append(Poscar.from_file(contcar[0]).structure)
return NEBAnalysis.from_outcars(outcars, structures, **kwargs)
[docs] def as_dict(self):
"""
Dict representation of NEBAnalysis.
Returns:
JSON serializable dict representation.
"""
return {"@module": self.__class__.__module__,
"@class": self.__class__.__name__,
'r': jsanitize(self.r),
'energies': jsanitize(self.energies),
'forces': jsanitize(self.forces),
'structures': [s.as_dict() for s in self.structures]}
[docs]def combine_neb_plots(neb_analyses, arranged_neb_analyses=False,
reverse_plot=False):
"""
neb_analyses: a list of NEBAnalysis objects
arranged_neb_analyses: The code connects two end points with the
smallest-energy difference. If all end points have very close energies, it's
likely to result in an inaccurate connection. Manually arrange neb_analyses
if the combined plot is not as expected compared with all individual plots.
E.g., if there are two NEBAnalysis objects to combine, arrange in such a
way that the end-point energy of the first NEBAnalysis object is the
start-point energy of the second NEBAnalysis object.
Note that the barrier labeled in y-axis in the combined plot might be
different from that in the individual plot due to the reference energy used.
reverse_plot: reverse the plot or percolation direction.
return: a NEBAnalysis object
"""
x = StructureMatcher()
for neb_index in range(len(neb_analyses)):
if neb_index == 0:
neb1 = neb_analyses[neb_index]
neb1_energies = list(neb1.energies)
neb1_structures = neb1.structures
neb1_forces = neb1.forces
neb1_r = neb1.r
continue
neb2 = neb_analyses[neb_index]
neb2_energies = list(neb2.energies)
matching = 0
for neb1_s in [neb1_structures[0], neb1_structures[-1]]:
if x.fit(neb1_s, neb2.structures[0]) or \
x.fit(neb1_s, neb2.structures[-1]):
matching += 1
break
if matching == 0:
raise ValueError("no matched structures for connection!")
neb1_start_e, neb1_end_e = neb1_energies[0], neb1_energies[-1]
neb2_start_e, neb2_end_e = neb2_energies[0], neb2_energies[-1]
min_e_diff = min(([abs(neb1_start_e - neb2_start_e),
abs(neb1_start_e - neb2_end_e),
abs(neb1_end_e - neb2_start_e),
abs(neb1_end_e - neb2_end_e)]))
if arranged_neb_analyses:
neb1_energies = neb1_energies[0:len(neb1_energies) - 1] \
+ [(neb1_energies[-1] + neb2_energies[0]) / 2] \
+ neb2_energies[
1:]
neb1_structures = neb1_structures + neb2.structures[1:]
neb1_forces = list(neb1_forces) + list(neb2.forces)[1:]
neb1_r = list(neb1_r) + [i + neb1_r[-1] for i in
list(neb2.r)[1:]]
elif abs(neb1_start_e - neb2_start_e) == min_e_diff:
neb1_energies = list(reversed(neb1_energies[1:])) + neb2_energies
neb1_structures = list(
reversed((neb1_structures[1:]))) + neb2.structures
neb1_forces = list(reversed(list(neb1_forces)[1:])) + list(
neb2.forces)
neb1_r = list(reversed(
[i * -1 - neb1_r[-1] * -1 for i in list(neb1_r)[1:]])) + [
i + neb1_r[-1] for i in list(neb2.r)]
elif abs(neb1_start_e - neb2_end_e) == min_e_diff:
neb1_energies = neb2_energies + neb1_energies[1:]
neb1_structures = neb2.structures + neb1_structures[1:]
neb1_forces = list(neb2.forces) + list(neb1_forces)[1:]
neb1_r = [i for i in list(neb2.r)] + \
[i + list(neb2.r)[-1] for i in list(neb1_r)[1:]]
elif abs(neb1_end_e - neb2_start_e) == min_e_diff:
neb1_energies = neb1_energies + neb2_energies[1:]
neb1_structures = neb1_structures + neb2.structures[1:]
neb1_forces = list(neb1_forces) + list(neb2.forces)[1:]
neb1_r = [i for i in list(neb1_r)] + [i + neb1_r[-1] for i in list(neb2.r)[1:]]
else:
neb1_energies = neb1_energies + list(reversed(neb2_energies))[1:]
neb1_structures = neb1_structures + list(
reversed((neb2.structures)))[1:]
neb1_forces = list(neb1_forces) + list(reversed(list(neb2.forces)))[1:]
neb1_r = list(neb1_r) + list(
reversed([i * -1 - list(neb2.r)[-1] * -1 + list(neb1_r)[-1]
for i in list(neb2.r)[:-1]]))
if reverse_plot:
na = NEBAnalysis(
list(reversed([i * -1 - neb1_r[-1] * -1 for i in list(neb1_r)])),
list(reversed(neb1_energies)),
list(reversed(neb1_forces)), list(reversed(neb1_structures)))
else:
na = NEBAnalysis(neb1_r, neb1_energies, neb1_forces, neb1_structures)
return na