# coding: utf-8
# Copyright (c) Pymatgen Development Team.
# Distributed under the terms of the MIT License.
"""
This module defines tools to generate and analyze phase diagrams.
"""
import re
import collections
import itertools
import math
import logging
from monty.json import MSONable, MontyDecoder
from functools import lru_cache
import numpy as np
from scipy.spatial import ConvexHull
from pymatgen.core.composition import Composition
from pymatgen.core.periodic_table import Element, DummySpecie, get_el_sp
from pymatgen.util.coord import Simplex, in_coord_list
from pymatgen.util.string import latexify
from pymatgen.util.plotting import pretty_plot
from pymatgen.analysis.reaction_calculator import Reaction, \
ReactionError
from pymatgen.entries import Entry
__author__ = "Shyue Ping Ong"
__copyright__ = "Copyright 2011, The Materials Project"
__version__ = "1.0"
__maintainer__ = "Shyue Ping Ong"
__email__ = "shyuep@gmail.com"
__status__ = "Production"
__date__ = "May 16, 2011"
logger = logging.getLogger(__name__)
[docs]class PDEntry(Entry):
"""
An object encompassing all relevant data for phase diagrams.
.. attribute:: composition
The composition associated with the PDEntry.
.. attribute:: energy
The energy associated with the entry.
.. attribute:: name
A name for the entry. This is the string shown in the phase diagrams.
By default, this is the reduced formula for the composition, but can be
set to some other string for display purposes.
.. attribute:: attribute
A arbitrary attribute. Can be used to specify that the entry is a newly
found compound, or to specify a particular label for the entry, etc.
An attribute can be anything but must be MSONable.
"""
def __init__(self, composition: Composition, energy: float,
name: str = None, attribute: object = None):
"""
Args:
composition (Composition): Composition
energy (float): Energy for composition.
name (str): Optional parameter to name the entry. Defaults
to the reduced chemical formula.
attribute: Optional attribute of the entry. Must be MSONable.
"""
super().__init__(composition, energy)
self.name = name if name else self.composition.reduced_formula
self.attribute = attribute
@property
def energy(self) -> float:
"""
:return: the energy of the entry.
"""
return self._energy
def __repr__(self):
return "PDEntry : {} with energy = {:.4f}".format(self.composition,
self.energy)
[docs] def as_dict(self):
"""
:return: MSONable dict.
"""
return_dict = super().as_dict()
return_dict.update({"name": self.name,
"attribute": self.attribute})
return return_dict
def __eq__(self, other):
if isinstance(other, self.__class__):
return self.as_dict() == other.as_dict()
else:
return False
def __hash__(self):
return id(self)
[docs] @classmethod
def from_dict(cls, d):
"""
:param d: Dict representation
:return: PDEntry
"""
return cls(Composition(d["composition"]), d["energy"],
d["name"] if "name" in d else None,
d["attribute"] if "attribute" in d else None)
[docs]class GrandPotPDEntry(PDEntry):
"""
A grand potential pd entry object encompassing all relevant data for phase
diagrams. Chemical potentials are given as a element-chemical potential
dict.
"""
def __init__(self, entry, chempots, name=None):
"""
Args:
entry: A PDEntry-like object.
chempots: Chemical potential specification as {Element: float}.
name: Optional parameter to name the entry. Defaults to the reduced
chemical formula of the original entry.
"""
comp = entry.composition
self.original_entry = entry
self.original_comp = comp
grandpot = entry.energy - sum([comp[el] * pot
for el, pot in chempots.items()])
self.chempots = chempots
new_comp_map = {el: comp[el] for el in comp.elements
if el not in chempots}
super().__init__(new_comp_map, grandpot, entry.name)
self.name = name if name else entry.name
@property
def is_element(self):
"""
True if the entry is an element.
"""
return self.original_comp.is_element
def __repr__(self):
chempot_str = " ".join(["mu_%s = %.4f" % (el, mu)
for el, mu in self.chempots.items()])
return "GrandPotPDEntry with original composition " + \
"{}, energy = {:.4f}, {}".format(self.original_entry.composition,
self.original_entry.energy,
chempot_str)
def __str__(self):
return self.__repr__()
[docs] def as_dict(self):
"""
:return: MSONAble dict
"""
return {"@module": self.__class__.__module__,
"@class": self.__class__.__name__,
"entry": self.original_entry.as_dict(),
"chempots": {el.symbol: u for el, u in self.chempots.items()},
"name": self.name}
[docs] @classmethod
def from_dict(cls, d):
"""
:param d: Dict representation
:return: PDStructureEntry
"""
chempots = {Element(symbol): u for symbol, u in d["chempots"].items()}
entry = MontyDecoder().process_decoded(d["entry"])
return cls(entry, chempots, d["name"])
def __getattr__(self, a):
"""
Delegate attribute to original entry if available.
"""
if hasattr(self.original_entry, a):
return getattr(self.original_entry, a)
raise AttributeError(a)
[docs]class TransformedPDEntry(PDEntry):
"""
This class repesents a TransformedPDEntry, which allows for a PDEntry to be
transformed to a different composition coordinate space. It is used in the
construction of phase diagrams that do not have elements as the terminal
compositions.
"""
def __init__(self, comp, original_entry):
"""
Args:
comp (Composition): Transformed composition as a Composition.
original_entry (PDEntry): Original entry that this entry arose from.
"""
super().__init__(comp, original_entry.energy)
self.original_entry = original_entry
self.name = original_entry.name
def __getattr__(self, a):
"""
Delegate attribute to original entry if available.
"""
if hasattr(self.original_entry, a):
return getattr(self.original_entry, a)
raise AttributeError(a)
def __repr__(self):
output = ["TransformedPDEntry {}".format(self.composition),
" with original composition {}".format(self.original_entry.composition),
", E = {:.4f}".format(self.original_entry.energy)]
return "".join(output)
def __str__(self):
return self.__repr__()
[docs] def as_dict(self):
"""
:return: MSONable dict
"""
return {"@module": self.__class__.__module__,
"@class": self.__class__.__name__,
"entry": self.original_entry.as_dict(),
"composition": self.composition}
[docs] @classmethod
def from_dict(cls, d):
"""
:param d: Dict representation
:return: TransformedPDEntry
"""
entry = MontyDecoder().process_decoded(d["entry"])
return cls(d["composition"], entry)
[docs]class PhaseDiagram(MSONable):
"""
Simple phase diagram class taking in elements and entries as inputs.
The algorithm is based on the work in the following papers:
1. S. P. Ong, L. Wang, B. Kang, and G. Ceder, Li-Fe-P-O2 Phase Diagram from
First Principles Calculations. Chem. Mater., 2008, 20(5), 1798-1807.
doi:10.1021/cm702327g
2. S. P. Ong, A. Jain, G. Hautier, B. Kang, G. Ceder, Thermal stabilities
of delithiated olivine MPO4 (M=Fe, Mn) cathodes investigated using first
principles calculations. Electrochem. Comm., 2010, 12(3), 427-430.
doi:10.1016/j.elecom.2010.01.010
.. attribute: elements:
Elements in the phase diagram.
..attribute: all_entries
All entries provided for Phase Diagram construction. Note that this
does not mean that all these entries are actually used in the phase
diagram. For example, this includes the positive formation energy
entries that are filtered out before Phase Diagram construction.
.. attribute: qhull_data
Data used in the convex hull operation. This is essentially a matrix of
composition data and energy per atom values created from qhull_entries.
.. attribute: qhull_entries:
Actual entries used in convex hull. Excludes all positive formation
energy entries.
.. attribute: dim
The dimensionality of the phase diagram.
.. attribute: facets
Facets of the phase diagram in the form of [[1,2,3],[4,5,6]...].
For a ternary, it is the indices (references to qhull_entries and
qhull_data) for the vertices of the phase triangles. Similarly
extended to higher D simplices for higher dimensions.
.. attribute: el_refs:
List of elemental references for the phase diagrams. These are
entries corresponding to the lowest energy element entries for simple
compositional phase diagrams.
.. attribute: simplices:
The simplices of the phase diagram as a list of np.ndarray, i.e.,
the list of stable compositional coordinates in the phase diagram.
"""
# Tolerance for determining if formation energy is positive.
formation_energy_tol = 1e-11
numerical_tol = 1e-8
def __init__(self, entries, elements=None):
"""
Standard constructor for phase diagram.
Args:
entries ([PDEntry]): A list of PDEntry-like objects having an
energy, energy_per_atom and composition.
elements ([Element]): Optional list of elements in the phase
diagram. If set to None, the elements are determined from
the the entries themselves and are sorted alphabetically.
If specified, element ordering (e.g. for pd coordinates)
is preserved.
"""
if elements is None:
elements = set()
for entry in entries:
elements.update(entry.composition.elements)
elements = sorted(list(elements))
elements = list(elements)
dim = len(elements)
entries = sorted(entries, key=lambda e: e.composition.reduced_composition)
el_refs = {}
min_entries = []
all_entries = []
for c, g in itertools.groupby(entries, key=lambda e: e.composition.reduced_composition):
g = list(g)
min_entry = min(g, key=lambda e: e.energy_per_atom)
if c.is_element:
el_refs[c.elements[0]] = min_entry
min_entries.append(min_entry)
all_entries.extend(g)
if len(el_refs) != dim:
raise PhaseDiagramError(
"There are no entries associated with a terminal element!.")
data = np.array([
[e.composition.get_atomic_fraction(el) for el in elements] + [
e.energy_per_atom]
for e in min_entries
])
# Use only entries with negative formation energy
vec = [el_refs[el].energy_per_atom for el in elements] + [-1]
form_e = -np.dot(data, vec)
inds = np.where(form_e < -self.formation_energy_tol)[0].tolist()
# Add the elemental references
inds.extend([min_entries.index(el) for el in el_refs.values()])
qhull_entries = [min_entries[i] for i in inds]
qhull_data = data[inds][:, 1:]
# Add an extra point to enforce full dimensionality.
# This point will be present in all upper hull facets.
extra_point = np.zeros(dim) + 1 / dim
extra_point[-1] = np.max(qhull_data) + 1
qhull_data = np.concatenate([qhull_data, [extra_point]], axis=0)
if dim == 1:
self.facets = [qhull_data.argmin(axis=0)]
else:
facets = get_facets(qhull_data)
finalfacets = []
for facet in facets:
# Skip facets that include the extra point
if max(facet) == len(qhull_data) - 1:
continue
m = qhull_data[facet]
m[:, -1] = 1
if abs(np.linalg.det(m)) > 1e-14:
finalfacets.append(facet)
self.facets = finalfacets
self.simplexes = [Simplex(qhull_data[f, :-1]) for f in self.facets]
self.all_entries = all_entries
self.qhull_data = qhull_data
self.dim = dim
self.el_refs = el_refs
self.elements = elements
self.qhull_entries = qhull_entries
self._stable_entries = set(self.qhull_entries[i] for i in
set(itertools.chain(*self.facets)))
[docs] def pd_coords(self, comp):
"""
The phase diagram is generated in a reduced dimensional space
(n_elements - 1). This function returns the coordinates in that space.
These coordinates are compatible with the stored simplex objects.
"""
if set(comp.elements).difference(self.elements):
raise ValueError('{} has elements not in the phase diagram {}'
''.format(comp, self.elements))
return np.array(
[comp.get_atomic_fraction(el) for el in self.elements[1:]])
@property
def all_entries_hulldata(self):
"""
:return: The actual ndarray used to construct the convex hull.
"""
data = []
for entry in self.all_entries:
comp = entry.composition
row = [comp.get_atomic_fraction(el) for el in self.elements]
row.append(entry.energy_per_atom)
data.append(row)
return np.array(data)[:, 1:]
@property
def unstable_entries(self):
"""
Entries that are unstable in the phase diagram. Includes positive
formation energy entries.
"""
return [e for e in self.all_entries if e not in self.stable_entries]
@property
def stable_entries(self):
"""
Returns the stable entries in the phase diagram.
"""
return self._stable_entries
def __repr__(self):
return self.__str__()
def __str__(self):
symbols = [el.symbol for el in self.elements]
output = ["{} phase diagram".format("-".join(symbols)),
"{} stable phases: ".format(len(self.stable_entries)),
", ".join([entry.name
for entry in self.stable_entries])]
return "\n".join(output)
[docs] def as_dict(self):
"""
:return: MSONAble dict
"""
return {"@module": self.__class__.__module__,
"@class": self.__class__.__name__,
"all_entries": [e.as_dict() for e in self.all_entries],
"elements": [e.as_dict() for e in self.elements]}
[docs] @classmethod
def from_dict(cls, d):
"""
:param d: Dict representation
:return: PhaseDiagram
"""
entries = [MontyDecoder().process_decoded(dd) for dd in d["all_entries"]]
elements = [Element.from_dict(dd) for dd in d["elements"]]
return cls(entries, elements)
@lru_cache(1)
def _get_facet_and_simplex(self, comp):
"""
Get any facet that a composition falls into. Cached so successive
calls at same composition are fast.
"""
c = self.pd_coords(comp)
for f, s in zip(self.facets, self.simplexes):
if s.in_simplex(c, PhaseDiagram.numerical_tol / 10):
return f, s
raise RuntimeError("No facet found for comp = {}".format(comp))
def _get_facet_chempots(self, facet):
"""
Calculates the chemical potentials for each element within a facet.
Args:
facet: Facet of the phase diagram.
Returns:
{ element: chempot } for all elements in the phase diagram.
"""
complist = [self.qhull_entries[i].composition for i in facet]
energylist = [self.qhull_entries[i].energy_per_atom for i in facet]
m = [[c.get_atomic_fraction(e) for e in self.elements] for c in
complist]
chempots = np.linalg.solve(m, energylist)
return dict(zip(self.elements, chempots))
[docs] def get_decomposition(self, comp):
"""
Provides the decomposition at a particular composition.
Args:
comp: A composition
Returns:
Decomposition as a dict of {Entry: amount}
"""
facet, simplex = self._get_facet_and_simplex(comp)
decomp_amts = simplex.bary_coords(self.pd_coords(comp))
return {self.qhull_entries[f]: amt
for f, amt in zip(facet, decomp_amts)
if abs(amt) > PhaseDiagram.numerical_tol}
[docs] def get_hull_energy(self, comp):
"""
Args:
comp (Composition): Input composition
Returns:
Energy of lowest energy equilibrium at desired composition. Not
normalized by atoms, i.e. E(Li4O2) = 2 * E(Li2O)
"""
e = 0
for k, v in self.get_decomposition(comp).items():
e += k.energy_per_atom * v
return e * comp.num_atoms
[docs] def get_decomp_and_e_above_hull(self, entry, allow_negative=False):
"""
Provides the decomposition and energy above convex hull for an entry.
Due to caching, can be much faster if entries with the same composition
are processed together.
Args:
entry: A PDEntry like object
allow_negative: Whether to allow negative e_above_hulls. Used to
calculate equilibrium reaction energies. Defaults to False.
Returns:
(decomp, energy above convex hull) Stable entries should have
energy above hull of 0. The decomposition is provided as a dict of
{Entry: amount}.
"""
if entry in self.stable_entries:
return {entry: 1}, 0
comp = entry.composition
facet, simplex = self._get_facet_and_simplex(comp)
decomp_amts = simplex.bary_coords(self.pd_coords(comp))
decomp = {self.qhull_entries[f]: amt
for f, amt in zip(facet, decomp_amts)
if abs(amt) > PhaseDiagram.numerical_tol}
energies = [self.qhull_entries[i].energy_per_atom for i in facet]
ehull = entry.energy_per_atom - np.dot(decomp_amts, energies)
if allow_negative or ehull >= -PhaseDiagram.numerical_tol:
return decomp, ehull
raise ValueError("No valid decomp found!")
[docs] def get_e_above_hull(self, entry):
"""
Provides the energy above convex hull for an entry
Args:
entry: A PDEntry like object
Returns:
Energy above convex hull of entry. Stable entries should have
energy above hull of 0.
"""
return self.get_decomp_and_e_above_hull(entry)[1]
[docs] def get_equilibrium_reaction_energy(self, entry):
"""
Provides the reaction energy of a stable entry from the neighboring
equilibrium stable entries (also known as the inverse distance to
hull).
Args:
entry: A PDEntry like object
Returns:
Equilibrium reaction energy of entry. Stable entries should have
equilibrium reaction energy <= 0.
"""
if entry not in self.stable_entries:
raise ValueError("Equilibrium reaction energy is available only "
"for stable entries.")
if entry.is_element:
return 0
entries = [e for e in self.stable_entries if e != entry]
modpd = PhaseDiagram(entries, self.elements)
return modpd.get_decomp_and_e_above_hull(entry,
allow_negative=True)[1]
[docs] def get_composition_chempots(self, comp):
"""
Get the chemical potentials for all elements at a given composition.
:param comp: Composition
:return: Dict of chemical potentials.
"""
facet = self._get_facet_and_simplex(comp)[0]
return self._get_facet_chempots(facet)
[docs] def get_all_chempots(self, comp):
"""
Get chemical potentials at a given compositon.
:param comp: Composition
:return: Chemical potentials.
"""
# note the top part takes from format of _get_facet_and_simplex,
# but wants to return all facets rather than the first one that meets this criteria
c = self.pd_coords(comp)
allfacets = []
for f, s in zip(self.facets, self.simplexes):
if s.in_simplex(c, PhaseDiagram.numerical_tol / 10):
allfacets.append(f)
if not len(allfacets):
raise RuntimeError("No facets found for comp = {}".format(comp))
else:
chempots = {}
for facet in allfacets:
facet_elt_list = [self.qhull_entries[j].name for j in facet]
facet_name = '-'.join(facet_elt_list)
chempots[facet_name] = self._get_facet_chempots(facet)
return chempots
[docs] def get_transition_chempots(self, element):
"""
Get the critical chemical potentials for an element in the Phase
Diagram.
Args:
element: An element. Has to be in the PD in the first place.
Returns:
A sorted sequence of critical chemical potentials, from less
negative to more negative.
"""
if element not in self.elements:
raise ValueError("get_transition_chempots can only be called with "
"elements in the phase diagram.")
critical_chempots = []
for facet in self.facets:
chempots = self._get_facet_chempots(facet)
critical_chempots.append(chempots[element])
clean_pots = []
for c in sorted(critical_chempots):
if len(clean_pots) == 0:
clean_pots.append(c)
else:
if abs(c - clean_pots[-1]) > PhaseDiagram.numerical_tol:
clean_pots.append(c)
clean_pots.reverse()
return tuple(clean_pots)
[docs] def get_critical_compositions(self, comp1, comp2):
"""
Get the critical compositions along the tieline between two
compositions. I.e. where the decomposition products change.
The endpoints are also returned.
Args:
comp1, comp2 (Composition): compositions that define the tieline
Returns:
[(Composition)]: list of critical compositions. All are of
the form x * comp1 + (1-x) * comp2
"""
n1 = comp1.num_atoms
n2 = comp2.num_atoms
pd_els = self.elements
# the reduced dimensionality Simplexes don't use the
# first element in the PD
c1 = self.pd_coords(comp1)
c2 = self.pd_coords(comp2)
# none of the projections work if c1 == c2, so just return *copies*
# of the inputs
if np.all(c1 == c2):
return [comp1.copy(), comp2.copy()]
intersections = [c1, c2]
for sc in self.simplexes:
intersections.extend(sc.line_intersection(c1, c2))
intersections = np.array(intersections)
# find position along line
l = (c2 - c1)
l /= np.sum(l ** 2) ** 0.5
proj = np.dot(intersections - c1, l)
# only take compositions between endpoints
proj = proj[np.logical_and(proj > -self.numerical_tol,
proj < proj[1] + self.numerical_tol)]
proj.sort()
# only unique compositions
valid = np.ones(len(proj), dtype=np.bool)
valid[1:] = proj[1:] > proj[:-1] + self.numerical_tol
proj = proj[valid]
ints = c1 + l * proj[:, None]
# reconstruct full-dimensional composition array
cs = np.concatenate([np.array([1 - np.sum(ints, axis=-1)]).T,
ints], axis=-1)
# mixing fraction when compositions are normalized
x = proj / np.dot(c2 - c1, l)
# mixing fraction when compositions are not normalized
x_unnormalized = x * n1 / (n2 + x * (n1 - n2))
num_atoms = n1 + (n2 - n1) * x_unnormalized
cs *= num_atoms[:, None]
return [Composition((c, v) for c, v in zip(pd_els, m)) for m in cs]
[docs] def get_element_profile(self, element, comp, comp_tol=1e-5):
"""
Provides the element evolution data for a composition.
For example, can be used to analyze Li conversion voltages by varying
uLi and looking at the phases formed. Also can be used to analyze O2
evolution by varying uO2.
Args:
element: An element. Must be in the phase diagram.
comp: A Composition
comp_tol: The tolerance to use when calculating decompositions.
Phases with amounts less than this tolerance are excluded.
Defaults to 1e-5.
Returns:
Evolution data as a list of dictionaries of the following format:
[ {'chempot': -10.487582010000001, 'evolution': -2.0,
'reaction': Reaction Object], ...]
"""
element = get_el_sp(element)
if element not in self.elements:
raise ValueError("get_transition_chempots can only be called with"
" elements in the phase diagram.")
gccomp = Composition({el: amt for el, amt in comp.items()
if el != element})
elref = self.el_refs[element]
elcomp = Composition(element.symbol)
evolution = []
for cc in self.get_critical_compositions(elcomp, gccomp)[1:]:
decomp_entries = self.get_decomposition(cc).keys()
decomp = [k.composition for k in decomp_entries]
rxn = Reaction([comp], decomp + [elcomp])
rxn.normalize_to(comp)
c = self.get_composition_chempots(cc + elcomp * 1e-5)[element]
amt = -rxn.coeffs[rxn.all_comp.index(elcomp)]
evolution.append({'chempot': c,
'evolution': amt,
'element_reference': elref,
'reaction': rxn, 'entries': decomp_entries})
return evolution
[docs] def get_chempot_range_map(self, elements, referenced=True, joggle=True):
"""
Returns a chemical potential range map for each stable entry.
Args:
elements: Sequence of elements to be considered as independent
variables. E.g., if you want to show the stability ranges
of all Li-Co-O phases wrt to uLi and uO, you will supply
[Element("Li"), Element("O")]
referenced: If True, gives the results with a reference being the
energy of the elemental phase. If False, gives absolute values.
joggle (boolean): Whether to joggle the input to avoid precision
errors.
Returns:
Returns a dict of the form {entry: [simplices]}. The list of
simplices are the sides of the N-1 dim polytope bounding the
allowable chemical potential range of each entry.
"""
all_chempots = []
pd = self
facets = pd.facets
for facet in facets:
chempots = self._get_facet_chempots(facet)
all_chempots.append([chempots[el] for el in pd.elements])
inds = [pd.elements.index(el) for el in elements]
el_energies = {el: 0.0 for el in elements}
if referenced:
el_energies = {el: pd.el_refs[el].energy_per_atom
for el in elements}
chempot_ranges = collections.defaultdict(list)
vertices = [list(range(len(self.elements)))]
if len(all_chempots) > len(self.elements):
vertices = get_facets(all_chempots, joggle=joggle)
for ufacet in vertices:
for combi in itertools.combinations(ufacet, 2):
data1 = facets[combi[0]]
data2 = facets[combi[1]]
common_ent_ind = set(data1).intersection(set(data2))
if len(common_ent_ind) == len(elements):
common_entries = [pd.qhull_entries[i]
for i in common_ent_ind]
data = np.array([[all_chempots[i][j]
- el_energies[pd.elements[j]]
for j in inds] for i in combi])
sim = Simplex(data)
for entry in common_entries:
chempot_ranges[entry].append(sim)
return chempot_ranges
[docs] def getmu_vertices_stability_phase(self, target_comp, dep_elt, tol_en=1e-2):
"""
returns a set of chemical potentials corresponding to the vertices of
the simplex in the chemical potential phase diagram.
The simplex is built using all elements in the target_composition
except dep_elt.
The chemical potential of dep_elt is computed from the target
composition energy.
This method is useful to get the limiting conditions for
defects computations for instance.
Args:
target_comp: A Composition object
dep_elt: the element for which the chemical potential is computed
from the energy of
the stable phase at the target composition
tol_en: a tolerance on the energy to set
Returns:
[{Element:mu}]: An array of conditions on simplex vertices for
which each element has a chemical potential set to a given
value. "absolute" values (i.e., not referenced to element energies)
"""
muref = np.array([self.el_refs[e].energy_per_atom
for e in self.elements if e != dep_elt])
chempot_ranges = self.get_chempot_range_map(
[e for e in self.elements if e != dep_elt])
for e in self.elements:
if e not in target_comp.elements:
target_comp = target_comp + Composition({e: 0.0})
coeff = [-target_comp[e] for e in self.elements if e != dep_elt]
for e in chempot_ranges.keys():
if e.composition.reduced_composition == \
target_comp.reduced_composition:
multiplicator = e.composition[dep_elt] / target_comp[dep_elt]
ef = e.energy / multiplicator
all_coords = []
for s in chempot_ranges[e]:
for v in s._coords:
elts = [e for e in self.elements if e != dep_elt]
res = {}
for i in range(len(elts)):
res[elts[i]] = v[i] + muref[i]
res[dep_elt] = (np.dot(v + muref, coeff) + ef) / target_comp[dep_elt]
already_in = False
for di in all_coords:
dict_equals = True
for k in di:
if abs(di[k] - res[k]) > tol_en:
dict_equals = False
break
if dict_equals:
already_in = True
break
if not already_in:
all_coords.append(res)
return all_coords
[docs] def get_chempot_range_stability_phase(self, target_comp, open_elt):
"""
returns a set of chemical potentials corresponding to the max and min
chemical potential of the open element for a given composition. It is
quite common to have for instance a ternary oxide (e.g., ABO3) for
which you want to know what are the A and B chemical potential leading
to the highest and lowest oxygen chemical potential (reducing and
oxidizing conditions). This is useful for defect computations.
Args:
target_comp: A Composition object
open_elt: Element that you want to constrain to be max or min
Returns:
{Element:(mu_min,mu_max)}: Chemical potentials are given in
"absolute" values (i.e., not referenced to 0)
"""
muref = np.array([self.el_refs[e].energy_per_atom
for e in self.elements if e != open_elt])
chempot_ranges = self.get_chempot_range_map(
[e for e in self.elements if e != open_elt])
for e in self.elements:
if e not in target_comp.elements:
target_comp = target_comp + Composition({e: 0.0})
coeff = [-target_comp[e] for e in self.elements if e != open_elt]
max_open = -float('inf')
min_open = float('inf')
max_mus = None
min_mus = None
for e in chempot_ranges.keys():
if e.composition.reduced_composition == \
target_comp.reduced_composition:
multiplicator = e.composition[open_elt] / target_comp[open_elt]
ef = e.energy / multiplicator
all_coords = []
for s in chempot_ranges[e]:
for v in s._coords:
all_coords.append(v)
if (np.dot(v + muref, coeff) + ef) / target_comp[open_elt] > max_open:
max_open = (np.dot(v + muref, coeff) + ef) / target_comp[open_elt]
max_mus = v
if (np.dot(v + muref, coeff) + ef) / target_comp[open_elt] < min_open:
min_open = (np.dot(v + muref, coeff) + ef) / target_comp[open_elt]
min_mus = v
elts = [e for e in self.elements if e != open_elt]
res = {}
for i in range(len(elts)):
res[elts[i]] = (min_mus[i] + muref[i], max_mus[i] + muref[i])
res[open_elt] = (min_open, max_open)
return res
[docs]class GrandPotentialPhaseDiagram(PhaseDiagram):
"""
A class representing a Grand potential phase diagram. Grand potential phase
diagrams are essentially phase diagrams that are open to one or more
components. To construct such phase diagrams, the relevant free energy is
the grand potential, which can be written as the Legendre transform of the
Gibbs free energy as follows
Grand potential = G - u_X N_X
The algorithm is based on the work in the following papers:
1. S. P. Ong, L. Wang, B. Kang, and G. Ceder, Li-Fe-P-O2 Phase Diagram from
First Principles Calculations. Chem. Mater., 2008, 20(5), 1798-1807.
doi:10.1021/cm702327g
2. S. P. Ong, A. Jain, G. Hautier, B. Kang, G. Ceder, Thermal stabilities
of delithiated olivine MPO4 (M=Fe, Mn) cathodes investigated using first
principles calculations. Electrochem. Comm., 2010, 12(3), 427-430.
doi:10.1016/j.elecom.2010.01.010
"""
def __init__(self, entries, chempots, elements=None):
"""
Standard constructor for grand potential phase diagram.
Args:
entries ([PDEntry]): A list of PDEntry-like objects having an
energy, energy_per_atom and composition.
chempots {Element: float}: Specify the chemical potentials
of the open elements.
elements ([Element]): Optional list of elements in the phase
diagram. If set to None, the elements are determined from
the the entries themselves.
"""
if elements is None:
elements = set()
for entry in entries:
elements.update(entry.composition.elements)
self.chempots = {get_el_sp(el): u for el, u in chempots.items()}
elements = set(elements).difference(self.chempots.keys())
all_entries = []
for e in entries:
if len(set(e.composition.elements).intersection(set(elements))) > 0:
all_entries.append(GrandPotPDEntry(e, self.chempots))
super().__init__(all_entries, elements)
def __str__(self):
output = []
chemsys = "-".join([el.symbol for el in self.elements])
output.append("{} grand potential phase diagram with ".format(chemsys))
output[-1] += ", ".join(["u{}={}".format(el, v)
for el, v in self.chempots.items()])
output.append("{} stable phases: ".format(len(self.stable_entries)))
output.append(", ".join([entry.name
for entry in self.stable_entries]))
return "\n".join(output)
[docs] def as_dict(self):
"""
:return: MSONable dict
"""
return {"@module": self.__class__.__module__,
"@class": self.__class__.__name__,
"all_entries": [e.as_dict() for e in self.all_entries],
"chempots": self.chempots,
"elements": [e.as_dict() for e in self.elements]}
[docs] @classmethod
def from_dict(cls, d):
"""
:param d: Dict representation
:return: GrandPotentialPhaseDiagram
"""
entries = MontyDecoder().process_decoded(d["all_entries"])
elements = MontyDecoder().process_decoded(d["elements"])
return cls(entries, d["chempots"], elements)
[docs]class CompoundPhaseDiagram(PhaseDiagram):
"""
Generates phase diagrams from compounds as terminations instead of
elements.
"""
# Tolerance for determining if amount of a composition is positive.
amount_tol = 1e-5
def __init__(self, entries, terminal_compositions,
normalize_terminal_compositions=True):
"""
Initializes a CompoundPhaseDiagram.
Args:
entries ([PDEntry]): Sequence of input entries. For example,
if you want a Li2O-P2O5 phase diagram, you might have all
Li-P-O entries as an input.
terminal_compositions ([Composition]): Terminal compositions of
phase space. In the Li2O-P2O5 example, these will be the
Li2O and P2O5 compositions.
normalize_terminal_compositions (bool): Whether to normalize the
terminal compositions to a per atom basis. If normalized,
the energy above hulls will be consistent
for comparison across systems. Non-normalized terminals are
more intuitive in terms of compositional breakdowns.
"""
self.original_entries = entries
self.terminal_compositions = terminal_compositions
self.normalize_terminals = normalize_terminal_compositions
(pentries, species_mapping) = \
self.transform_entries(entries, terminal_compositions)
self.species_mapping = species_mapping
super().__init__(
pentries, elements=species_mapping.values())
[docs] def as_dict(self):
"""
:return: MSONable dict
"""
return {
"@module": self.__class__.__module__,
"@class": self.__class__.__name__,
"original_entries": [e.as_dict() for e in self.original_entries],
"terminal_compositions": [c.as_dict()
for c in self.terminal_compositions],
"normalize_terminal_compositions":
self.normalize_terminals}
[docs] @classmethod
def from_dict(cls, d):
"""
:param d: Dict Representation
:return: CompoundPhaseDiagram
"""
dec = MontyDecoder()
entries = dec.process_decoded(d["original_entries"])
terminal_compositions = dec.process_decoded(d["terminal_compositions"])
return cls(entries, terminal_compositions,
d["normalize_terminal_compositions"])
[docs]class ReactionDiagram:
"""
Analyzes the possible reactions between a pair of compounds, e.g.,
an electrolyte and an electrode.
"""
def __init__(self, entry1, entry2, all_entries, tol=1e-4,
float_fmt="%.4f"):
"""
Args:
entry1 (ComputedEntry): Entry for 1st component. Note that
corrections, if any, must already be pre-applied. This is to
give flexibility for different kinds of corrections, e.g.,
if a particular entry is fitted to an experimental data (such
as EC molecule).
entry2 (ComputedEntry): Entry for 2nd component. Note that
corrections must already be pre-applied. This is to
give flexibility for different kinds of corrections, e.g.,
if a particular entry is fitted to an experimental data (such
as EC molecule).
all_entries ([ComputedEntry]): All other entries to be
considered in the analysis. Note that corrections, if any,
must already be pre-applied.
tol (float): Tolerance to be used to determine validity of reaction.
float_fmt (str): Formatting string to be applied to all floats.
Determines number of decimal places in reaction string.
"""
elements = set()
for e in [entry1, entry2]:
elements.update([el.symbol for el in e.composition.elements])
elements = tuple(elements) # Fix elements to ensure order.
comp_vec1 = np.array([entry1.composition.get_atomic_fraction(el)
for el in elements])
comp_vec2 = np.array([entry2.composition.get_atomic_fraction(el)
for el in elements])
r1 = entry1.composition.reduced_composition
r2 = entry2.composition.reduced_composition
logger.debug("%d total entries." % len(all_entries))
pd = PhaseDiagram(all_entries + [entry1, entry2])
terminal_formulas = [entry1.composition.reduced_formula,
entry2.composition.reduced_formula]
logger.debug("%d stable entries" % len(pd.stable_entries))
logger.debug("%d facets" % len(pd.facets))
logger.debug("%d qhull_entries" % len(pd.qhull_entries))
rxn_entries = []
done = []
def fmt(fl):
return float_fmt % fl
for facet in pd.facets:
for face in itertools.combinations(facet, len(facet) - 1):
face_entries = [pd.qhull_entries[i] for i in face]
if any([e.composition.reduced_formula in terminal_formulas
for e in face_entries]):
continue
try:
m = []
for e in face_entries:
m.append([e.composition.get_atomic_fraction(el)
for el in elements])
m.append(comp_vec2 - comp_vec1)
m = np.array(m).T
coeffs = np.linalg.solve(m, comp_vec2)
x = coeffs[-1]
if all([c >= -tol for c in coeffs]) and \
(abs(sum(coeffs[:-1]) - 1) < tol) and \
(tol < x < 1 - tol):
c1 = x / r1.num_atoms
c2 = (1 - x) / r2.num_atoms
factor = 1 / (c1 + c2)
c1 *= factor
c2 *= factor
# Avoid duplicate reactions.
if any([np.allclose([c1, c2], cc) for cc in done]):
continue
done.append((c1, c2))
rxn_str = "%s %s + %s %s -> " % (
fmt(c1), r1.reduced_formula,
fmt(c2), r2.reduced_formula)
products = []
product_entries = []
energy = - (x * entry1.energy_per_atom +
(1 - x) * entry2.energy_per_atom)
for c, e in zip(coeffs[:-1], face_entries):
if c > tol:
r = e.composition.reduced_composition
products.append("%s %s" % (
fmt(c / r.num_atoms * factor),
r.reduced_formula))
product_entries.append((c, e))
energy += c * e.energy_per_atom
rxn_str += " + ".join(products)
comp = x * comp_vec1 + (1 - x) * comp_vec2
entry = PDEntry(
Composition(dict(zip(elements, comp))),
energy=energy, attribute=rxn_str)
entry.decomposition = product_entries
rxn_entries.append(entry)
except np.linalg.LinAlgError:
logger.debug("Reactants = %s" % (", ".join([
entry1.composition.reduced_formula,
entry2.composition.reduced_formula])))
logger.debug("Products = %s" % (
", ".join([e.composition.reduced_formula
for e in face_entries])))
rxn_entries = sorted(rxn_entries, key=lambda e: e.name, reverse=True)
self.entry1 = entry1
self.entry2 = entry2
self.rxn_entries = rxn_entries
self.labels = collections.OrderedDict()
for i, e in enumerate(rxn_entries):
self.labels[str(i + 1)] = e.attribute
e.name = str(i + 1)
self.all_entries = all_entries
self.pd = pd
[docs] def get_compound_pd(self):
"""
Get the CompoundPhaseDiagram object, which can then be used for
plotting.
Returns:
(CompoundPhaseDiagram)
"""
# For this plot, since the reactions are reported in formation
# energies, we need to set the energies of the terminal compositions
# to 0. So we make create copies with 0 energy.
entry1 = PDEntry(self.entry1.composition, 0)
entry2 = PDEntry(self.entry2.composition, 0)
cpd = CompoundPhaseDiagram(
self.rxn_entries + [entry1, entry2],
[Composition(entry1.composition.reduced_formula),
Composition(entry2.composition.reduced_formula)],
normalize_terminal_compositions=False)
return cpd
[docs]class PhaseDiagramError(Exception):
"""
An exception class for Phase Diagram generation.
"""
pass
[docs]def get_facets(qhull_data, joggle=False):
"""
Get the simplex facets for the Convex hull.
Args:
qhull_data (np.ndarray): The data from which to construct the convex
hull as a Nxd array (N being number of data points and d being the
dimension)
joggle (boolean): Whether to joggle the input to avoid precision
errors.
Returns:
List of simplices of the Convex Hull.
"""
if joggle:
return ConvexHull(qhull_data, qhull_options="QJ i").simplices
else:
return ConvexHull(qhull_data, qhull_options="Qt i").simplices
[docs]class PDPlotter:
"""
A plotter class for phase diagrams.
"""
def __init__(self, phasediagram, show_unstable=0, **plotkwargs):
r"""
Args:
phasediagram: PhaseDiagram object.
show_unstable (float): Whether unstable phases will be plotted as
well as red crosses. If a number > 0 is entered, all phases with
ehull < show_unstable will be shown.
**plotkwargs: Keyword args passed to matplotlib.pyplot.plot. Can
be used to customize markers etc. If not set, the default is
{
"markerfacecolor": (0.2157, 0.4941, 0.7216),
"markersize": 10,
"linewidth": 3
}
"""
# note: palettable imports matplotlib
from palettable.colorbrewer.qualitative import Set1_3
self._pd = phasediagram
self._dim = len(self._pd.elements)
if self._dim > 4:
raise ValueError("Only 1-4 components supported!")
self.lines = uniquelines(self._pd.facets) if self._dim > 1 else \
[[self._pd.facets[0][0], self._pd.facets[0][0]]]
self.show_unstable = show_unstable
colors = Set1_3.mpl_colors
self.plotkwargs = plotkwargs or {
"markerfacecolor": colors[2],
"markersize": 10,
"linewidth": 3
}
@property
def pd_plot_data(self):
"""
Plot data for phase diagram.
2-comp - Full hull with energies
3/4-comp - Projection into 2D or 3D Gibbs triangle.
Returns:
(lines, stable_entries, unstable_entries):
- lines is a list of list of coordinates for lines in the PD.
- stable_entries is a {coordinate : entry} for each stable node
in the phase diagram. (Each coordinate can only have one
stable phase)
- unstable_entries is a {entry: coordinates} for all unstable
nodes in the phase diagram.
"""
pd = self._pd
entries = pd.qhull_entries
data = np.array(pd.qhull_data)
lines = []
stable_entries = {}
for line in self.lines:
entry1 = entries[line[0]]
entry2 = entries[line[1]]
if self._dim < 3:
x = [data[line[0]][0], data[line[1]][0]]
y = [pd.get_form_energy_per_atom(entry1),
pd.get_form_energy_per_atom(entry2)]
coord = [x, y]
elif self._dim == 3:
coord = triangular_coord(data[line, 0:2])
else:
coord = tet_coord(data[line, 0:3])
lines.append(coord)
labelcoord = list(zip(*coord))
stable_entries[labelcoord[0]] = entry1
stable_entries[labelcoord[1]] = entry2
all_entries = pd.all_entries
all_data = np.array(pd.all_entries_hulldata)
unstable_entries = dict()
stable = pd.stable_entries
for i in range(0, len(all_entries)):
entry = all_entries[i]
if entry not in stable:
if self._dim < 3:
x = [all_data[i][0], all_data[i][0]]
y = [pd.get_form_energy_per_atom(entry),
pd.get_form_energy_per_atom(entry)]
coord = [x, y]
elif self._dim == 3:
coord = triangular_coord([all_data[i, 0:2],
all_data[i, 0:2]])
else:
coord = tet_coord([all_data[i, 0:3], all_data[i, 0:3],
all_data[i, 0:3]])
labelcoord = list(zip(*coord))
unstable_entries[entry] = labelcoord[0]
return lines, stable_entries, unstable_entries
[docs] def get_plot(self, label_stable=True, label_unstable=True, ordering=None,
energy_colormap=None, process_attributes=False, plt=None):
"""
:param label_stable: Whether to label stable compounds.
:param label_unstable: Whether to label unstable compounds.
:param ordering: Ordering of vertices.
:param energy_colormap: Colormap for coloring energy.
:param process_attributes: Whether to process the attributes.
:param plt: Existing plt object if plotting multiple phase diagrams.
:return: matplotlib.pyplot.
"""
if self._dim < 4:
plt = self._get_2d_plot(label_stable, label_unstable, ordering,
energy_colormap, plt=plt,
process_attributes=process_attributes)
elif self._dim == 4:
plt = self._get_3d_plot(label_stable)
return plt
[docs] def plot_element_profile(self, element, comp, show_label_index=None,
xlim=5):
"""
Draw the element profile plot for a composition varying different
chemical potential of an element.
X value is the negative value of the chemical potential reference to
elemental chemical potential. For example, if choose Element("Li"),
X= -(µLi-µLi0), which corresponds to the voltage versus metal anode.
Y values represent for the number of element uptake in this composition
(unit: per atom). All reactions are printed to help choosing the
profile steps you want to show label in the plot.
Args:
element (Element): An element of which the chemical potential is
considered. It also must be in the phase diagram.
comp (Composition): A composition.
show_label_index (list of integers): The labels for reaction products
you want to show in the plot. Default to None (not showing any
annotation for reaction products). For the profile steps you want
to show the labels, just add it to the show_label_index. The
profile step counts from zero. For example, you can set
show_label_index=[0, 2, 5] to label profile step 0,2,5.
xlim (float): The max x value. x value is from 0 to xlim. Default to
5 eV.
Returns:
Plot of element profile evolution by varying the chemical potential
of an element.
"""
plt = pretty_plot(12, 8)
pd = self._pd
evolution = pd.get_element_profile(element, comp)
num_atoms = evolution[0]["reaction"].reactants[0].num_atoms
element_energy = evolution[0]['chempot']
x1, x2, y1 = None, None, None
for i, d in enumerate(evolution):
v = -(d["chempot"] - element_energy)
if i != 0:
plt.plot([x2, x2], [y1, d["evolution"] / num_atoms],
'k', linewidth=2.5)
x1 = v
y1 = d["evolution"] / num_atoms
if i != len(evolution) - 1:
x2 = - (evolution[i + 1]["chempot"] - element_energy)
else:
x2 = 5.0
if show_label_index is not None and i in show_label_index:
products = [re.sub(r"(\d+)", r"$_{\1}$", p.reduced_formula)
for p in d["reaction"].products
if p.reduced_formula != element.symbol]
plt.annotate(", ".join(products), xy=(v + 0.05, y1 + 0.05),
fontsize=24, color='r')
plt.plot([x1, x2], [y1, y1], 'r', linewidth=3)
else:
plt.plot([x1, x2], [y1, y1], 'k', linewidth=2.5)
plt.xlim((0, xlim))
plt.xlabel("-$\\Delta{\\mu}$ (eV)")
plt.ylabel("Uptake per atom")
return plt
[docs] def show(self, *args, **kwargs):
r"""
Draws the phase diagram using Matplotlib and show it.
Args:
*args: Passed to get_plot.
**kwargs: Passed to get_plot.
"""
self.get_plot(*args, **kwargs).show()
def _get_2d_plot(self, label_stable=True, label_unstable=True,
ordering=None, energy_colormap=None, vmin_mev=-60.0,
vmax_mev=60.0, show_colorbar=True,
process_attributes=False, plt=None):
"""
Shows the plot using pylab. Usually I won't do imports in methods,
but since plotting is a fairly expensive library to load and not all
machines have matplotlib installed, I have done it this way.
"""
if plt is None:
plt = pretty_plot(8, 6)
from matplotlib.font_manager import FontProperties
if ordering is None:
(lines, labels, unstable) = self.pd_plot_data
else:
(_lines, _labels, _unstable) = self.pd_plot_data
(lines, labels, unstable) = order_phase_diagram(
_lines, _labels, _unstable, ordering)
if energy_colormap is None:
if process_attributes:
for x, y in lines:
plt.plot(x, y, "k-", linewidth=3, markeredgecolor="k")
# One should think about a clever way to have "complex"
# attributes with complex processing options but with a clear
# logic. At this moment, I just use the attributes to know
# whether an entry is a new compound or an existing (from the
# ICSD or from the MP) one.
for x, y in labels.keys():
if labels[(x, y)].attribute is None or \
labels[(x, y)].attribute == "existing":
plt.plot(x, y, "ko", **self.plotkwargs)
else:
plt.plot(x, y, "k*", **self.plotkwargs)
else:
for x, y in lines:
plt.plot(x, y, "ko-", **self.plotkwargs)
else:
from matplotlib.colors import Normalize, LinearSegmentedColormap
from matplotlib.cm import ScalarMappable
for x, y in lines:
plt.plot(x, y, "k-", markeredgecolor="k")
vmin = vmin_mev / 1000.0
vmax = vmax_mev / 1000.0
if energy_colormap == 'default':
mid = - vmin / (vmax - vmin)
cmap = LinearSegmentedColormap.from_list(
'my_colormap', [(0.0, '#005500'), (mid, '#55FF55'),
(mid, '#FFAAAA'), (1.0, '#FF0000')])
else:
cmap = energy_colormap
norm = Normalize(vmin=vmin, vmax=vmax)
_map = ScalarMappable(norm=norm, cmap=cmap)
_energies = [self._pd.get_equilibrium_reaction_energy(entry)
for coord, entry in labels.items()]
energies = [en if en < 0.0 else -0.00000001 for en in _energies]
vals_stable = _map.to_rgba(energies)
ii = 0
if process_attributes:
for x, y in labels.keys():
if labels[(x, y)].attribute is None or \
labels[(x, y)].attribute == "existing":
plt.plot(x, y, "o", markerfacecolor=vals_stable[ii],
markersize=12)
else:
plt.plot(x, y, "*", markerfacecolor=vals_stable[ii],
markersize=18)
ii += 1
else:
for x, y in labels.keys():
plt.plot(x, y, "o", markerfacecolor=vals_stable[ii],
markersize=15)
ii += 1
font = FontProperties()
font.set_weight("bold")
font.set_size(24)
# Sets a nice layout depending on the type of PD. Also defines a
# "center" for the PD, which then allows the annotations to be spread
# out in a nice manner.
if len(self._pd.elements) == 3:
plt.axis("equal")
plt.xlim((-0.1, 1.2))
plt.ylim((-0.1, 1.0))
plt.axis("off")
center = (0.5, math.sqrt(3) / 6)
else:
all_coords = labels.keys()
miny = min([c[1] for c in all_coords])
ybuffer = max(abs(miny) * 0.1, 0.1)
plt.xlim((-0.1, 1.1))
plt.ylim((miny - ybuffer, ybuffer))
center = (0.5, miny / 2)
plt.xlabel("Fraction", fontsize=28, fontweight='bold')
plt.ylabel("Formation energy (eV/atom)", fontsize=28,
fontweight='bold')
for coords in sorted(labels.keys(), key=lambda x: -x[1]):
entry = labels[coords]
label = entry.name
# The follow defines an offset for the annotation text emanating
# from the center of the PD. Results in fairly nice layouts for the
# most part.
vec = (np.array(coords) - center)
vec = vec / np.linalg.norm(vec) * 10 if np.linalg.norm(vec) != 0 \
else vec
valign = "bottom" if vec[1] > 0 else "top"
if vec[0] < -0.01:
halign = "right"
elif vec[0] > 0.01:
halign = "left"
else:
halign = "center"
if label_stable:
if process_attributes and entry.attribute == 'new':
plt.annotate(latexify(label), coords, xytext=vec,
textcoords="offset points",
horizontalalignment=halign,
verticalalignment=valign,
fontproperties=font,
color='g')
else:
plt.annotate(latexify(label), coords, xytext=vec,
textcoords="offset points",
horizontalalignment=halign,
verticalalignment=valign,
fontproperties=font)
if self.show_unstable:
font = FontProperties()
font.set_size(16)
energies_unstable = [self._pd.get_e_above_hull(entry)
for entry, coord in unstable.items()]
if energy_colormap is not None:
energies.extend(energies_unstable)
vals_unstable = _map.to_rgba(energies_unstable)
ii = 0
for entry, coords in unstable.items():
ehull = self._pd.get_e_above_hull(entry)
if ehull < self.show_unstable:
vec = (np.array(coords) - center)
vec = vec / np.linalg.norm(vec) * 10 \
if np.linalg.norm(vec) != 0 else vec
label = entry.name
if energy_colormap is None:
plt.plot(coords[0], coords[1], "ks", linewidth=3,
markeredgecolor="k", markerfacecolor="r",
markersize=8)
else:
plt.plot(coords[0], coords[1], "s", linewidth=3,
markeredgecolor="k",
markerfacecolor=vals_unstable[ii],
markersize=8)
if label_unstable:
plt.annotate(latexify(label), coords, xytext=vec,
textcoords="offset points",
horizontalalignment=halign, color="b",
verticalalignment=valign,
fontproperties=font)
ii += 1
if energy_colormap is not None and show_colorbar:
_map.set_array(energies)
cbar = plt.colorbar(_map)
cbar.set_label(
'Energy [meV/at] above hull (in red)\nInverse energy ['
'meV/at] above hull (in green)',
rotation=-90, ha='left', va='center')
f = plt.gcf()
f.set_size_inches((8, 6))
plt.subplots_adjust(left=0.09, right=0.98, top=0.98, bottom=0.07)
return plt
def _get_3d_plot(self, label_stable=True):
"""
Shows the plot using pylab. Usually I won"t do imports in methods,
but since plotting is a fairly expensive library to load and not all
machines have matplotlib installed, I have done it this way.
"""
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d.axes3d as p3
from matplotlib.font_manager import FontProperties
fig = plt.figure()
ax = p3.Axes3D(fig)
font = FontProperties()
font.set_weight("bold")
font.set_size(20)
(lines, labels, unstable) = self.pd_plot_data
count = 1
newlabels = list()
for x, y, z in lines:
ax.plot(x, y, z, "bo-", linewidth=3, markeredgecolor="b",
markerfacecolor="r", markersize=10)
for coords in sorted(labels.keys()):
entry = labels[coords]
label = entry.name
if label_stable:
if len(entry.composition.elements) == 1:
ax.text(coords[0], coords[1], coords[2], label)
else:
ax.text(coords[0], coords[1], coords[2], str(count))
newlabels.append("{} : {}".format(count, latexify(label)))
count += 1
plt.figtext(0.01, 0.01, "\n".join(newlabels))
ax.axis("off")
return plt
[docs] def write_image(self, stream, image_format="svg", **kwargs):
r"""
Writes the phase diagram to an image in a stream.
Args:
stream:
stream to write to. Can be a file stream or a StringIO stream.
image_format
format for image. Can be any of matplotlib supported formats.
Defaults to svg for best results for vector graphics.
**kwargs: Pass through to get_plot functino.
"""
plt = self.get_plot(**kwargs)
f = plt.gcf()
f.set_size_inches((12, 10))
plt.savefig(stream, format=image_format)
[docs] def plot_chempot_range_map(self, elements, referenced=True):
"""
Plot the chemical potential range _map. Currently works only for
3-component PDs.
Args:
elements: Sequence of elements to be considered as independent
variables. E.g., if you want to show the stability ranges of
all Li-Co-O phases wrt to uLi and uO, you will supply
[Element("Li"), Element("O")]
referenced: if True, gives the results with a reference being the
energy of the elemental phase. If False, gives absolute values.
"""
self.get_chempot_range_map_plot(elements, referenced=referenced).show()
[docs] def get_chempot_range_map_plot(self, elements, referenced=True):
"""
Returns a plot of the chemical potential range _map. Currently works
only for 3-component PDs.
Args:
elements: Sequence of elements to be considered as independent
variables. E.g., if you want to show the stability ranges of
all Li-Co-O phases wrt to uLi and uO, you will supply
[Element("Li"), Element("O")]
referenced: if True, gives the results with a reference being the
energy of the elemental phase. If False, gives absolute values.
Returns:
A matplotlib plot object.
"""
plt = pretty_plot(12, 8)
chempot_ranges = self._pd.get_chempot_range_map(
elements, referenced=referenced)
missing_lines = {}
excluded_region = []
for entry, lines in chempot_ranges.items():
comp = entry.composition
center_x = 0
center_y = 0
coords = []
contain_zero = any([comp.get_atomic_fraction(el) == 0
for el in elements])
is_boundary = (not contain_zero) and sum([comp.get_atomic_fraction(el) for el in elements]) == 1
for line in lines:
(x, y) = line.coords.transpose()
plt.plot(x, y, "k-")
for coord in line.coords:
if not in_coord_list(coords, coord):
coords.append(coord.tolist())
center_x += coord[0]
center_y += coord[1]
if is_boundary:
excluded_region.extend(line.coords)
if coords and contain_zero:
missing_lines[entry] = coords
else:
xy = (center_x / len(coords), center_y / len(coords))
plt.annotate(latexify(entry.name), xy, fontsize=22)
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()
# Shade the forbidden chemical potential regions.
excluded_region.append([xlim[1], ylim[1]])
excluded_region = sorted(excluded_region, key=lambda c: c[0])
(x, y) = np.transpose(excluded_region)
plt.fill(x, y, "0.80")
# The hull does not generate the missing horizontal and vertical lines.
# The following code fixes this.
el0 = elements[0]
el1 = elements[1]
for entry, coords in missing_lines.items():
center_x = sum([c[0] for c in coords])
center_y = sum([c[1] for c in coords])
comp = entry.composition
is_x = comp.get_atomic_fraction(el0) < 0.01
is_y = comp.get_atomic_fraction(el1) < 0.01
n = len(coords)
if not (is_x and is_y):
if is_x:
coords = sorted(coords, key=lambda c: c[1])
for i in [0, -1]:
x = [min(xlim), coords[i][0]]
y = [coords[i][1], coords[i][1]]
plt.plot(x, y, "k")
center_x += min(xlim)
center_y += coords[i][1]
elif is_y:
coords = sorted(coords, key=lambda c: c[0])
for i in [0, -1]:
x = [coords[i][0], coords[i][0]]
y = [coords[i][1], min(ylim)]
plt.plot(x, y, "k")
center_x += coords[i][0]
center_y += min(ylim)
xy = (center_x / (n + 2), center_y / (n + 2))
else:
center_x = sum(coord[0] for coord in coords) + xlim[0]
center_y = sum(coord[1] for coord in coords) + ylim[0]
xy = (center_x / (n + 1), center_y / (n + 1))
plt.annotate(latexify(entry.name), xy,
horizontalalignment="center",
verticalalignment="center", fontsize=22)
plt.xlabel("$\\mu_{{{0}}} - \\mu_{{{0}}}^0$ (eV)"
.format(el0.symbol))
plt.ylabel("$\\mu_{{{0}}} - \\mu_{{{0}}}^0$ (eV)"
.format(el1.symbol))
plt.tight_layout()
return plt
[docs] def get_contour_pd_plot(self):
"""
Plot a contour phase diagram plot, where phase triangles are colored
according to degree of instability by interpolation. Currently only
works for 3-component phase diagrams.
Returns:
A matplotlib plot object.
"""
from scipy import interpolate
from matplotlib import cm
pd = self._pd
entries = pd.qhull_entries
data = np.array(pd.qhull_data)
plt = self._get_2d_plot()
data[:, 0:2] = triangular_coord(data[:, 0:2]).transpose()
for i, e in enumerate(entries):
data[i, 2] = self._pd.get_e_above_hull(e)
gridsize = 0.005
xnew = np.arange(0, 1., gridsize)
ynew = np.arange(0, 1, gridsize)
f = interpolate.LinearNDInterpolator(data[:, 0:2], data[:, 2])
znew = np.zeros((len(ynew), len(xnew)))
for (i, xval) in enumerate(xnew):
for (j, yval) in enumerate(ynew):
znew[j, i] = f(xval, yval)
plt.contourf(xnew, ynew, znew, 1000, cmap=cm.autumn_r)
plt.colorbar()
return plt
[docs]def uniquelines(q):
"""
Given all the facets, convert it into a set of unique lines. Specifically
used for converting convex hull facets into line pairs of coordinates.
Args:
q: A 2-dim sequence, where each row represents a facet. E.g.,
[[1,2,3],[3,6,7],...]
Returns:
setoflines:
A set of tuple of lines. E.g., ((1,2), (1,3), (2,3), ....)
"""
setoflines = set()
for facets in q:
for line in itertools.combinations(facets, 2):
setoflines.add(tuple(sorted(line)))
return setoflines
[docs]def triangular_coord(coord):
"""
Convert a 2D coordinate into a triangle-based coordinate system for a
prettier phase diagram.
Args:
coordinate: coordinate used in the convex hull computation.
Returns:
coordinates in a triangular-based coordinate system.
"""
unitvec = np.array([[1, 0], [0.5, math.sqrt(3) / 2]])
result = np.dot(np.array(coord), unitvec)
return result.transpose()
[docs]def tet_coord(coord):
"""
Convert a 3D coordinate into a tetrahedron based coordinate system for a
prettier phase diagram.
Args:
coordinate: coordinate used in the convex hull computation.
Returns:
coordinates in a tetrahedron-based coordinate system.
"""
unitvec = np.array([[1, 0, 0], [0.5, math.sqrt(3) / 2, 0],
[0.5, 1.0 / 3.0 * math.sqrt(3) / 2, math.sqrt(6) / 3]])
result = np.dot(np.array(coord), unitvec)
return result.transpose()
[docs]def order_phase_diagram(lines, stable_entries, unstable_entries, ordering):
"""
Orders the entries (their coordinates) in a phase diagram plot according
to the user specified ordering.
Ordering should be given as ['Up', 'Left', 'Right'], where Up,
Left and Right are the names of the entries in the upper, left and right
corners of the triangle respectively.
Args:
lines: list of list of coordinates for lines in the PD.
stable_entries: {coordinate : entry} for each stable node in the
phase diagram. (Each coordinate can only have one stable phase)
unstable_entries: {entry: coordinates} for all unstable nodes in the
phase diagram.
ordering: Ordering of the phase diagram, given as a list ['Up',
'Left','Right']
Returns:
(newlines, newstable_entries, newunstable_entries):
- newlines is a list of list of coordinates for lines in the PD.
- newstable_entries is a {coordinate : entry} for each stable node
in the phase diagram. (Each coordinate can only have one
stable phase)
- newunstable_entries is a {entry: coordinates} for all unstable
nodes in the phase diagram.
"""
yup = -1000.0
xleft = 1000.0
xright = -1000.0
for coord in stable_entries:
if coord[0] > xright:
xright = coord[0]
nameright = stable_entries[coord].name
if coord[0] < xleft:
xleft = coord[0]
nameleft = stable_entries[coord].name
if coord[1] > yup:
yup = coord[1]
nameup = stable_entries[coord].name
if (nameup not in ordering) or (nameright not in ordering) or (nameleft not in ordering):
raise ValueError(
'Error in ordering_phase_diagram : \n"{up}", "{left}" and "{'
'right}"'
' should be in ordering : {ord}'.format(up=nameup, left=nameleft,
right=nameright,
ord=ordering))
cc = np.array([0.5, np.sqrt(3.0) / 6.0], np.float)
if nameup == ordering[0]:
if nameleft == ordering[1]:
# The coordinates were already in the user ordering
return lines, stable_entries, unstable_entries
else:
newlines = [[np.array(1.0 - x), y] for x, y in lines]
newstable_entries = {(1.0 - c[0], c[1]): entry
for c, entry in stable_entries.items()}
newunstable_entries = {entry: (1.0 - c[0], c[1])
for entry, c in
unstable_entries.items()}
return newlines, newstable_entries, newunstable_entries
elif nameup == ordering[1]:
if nameleft == ordering[2]:
c120 = np.cos(2.0 * np.pi / 3.0)
s120 = np.sin(2.0 * np.pi / 3.0)
newlines = []
for x, y in lines:
newx = np.zeros_like(x)
newy = np.zeros_like(y)
for ii, xx in enumerate(x):
newx[ii] = c120 * (xx - cc[0]) - s120 * (y[ii] - cc[1]) + cc[0]
newy[ii] = s120 * (xx - cc[0]) + c120 * (y[ii] - cc[1]) + cc[1]
newlines.append([newx, newy])
newstable_entries = {
(c120 * (c[0] - cc[0]) - s120 * (c[1] - cc[1]) + cc[0],
s120 * (c[0] - cc[0]) + c120 * (c[1] - cc[1]) + cc[1]): entry
for c, entry in stable_entries.items()}
newunstable_entries = {
entry: (c120 * (c[0] - cc[0]) - s120 * (c[1] - cc[1]) + cc[0],
s120 * (c[0] - cc[0]) + c120 * (c[1] - cc[1]) + cc[1])
for entry, c in unstable_entries.items()}
return newlines, newstable_entries, newunstable_entries
else:
c120 = np.cos(2.0 * np.pi / 3.0)
s120 = np.sin(2.0 * np.pi / 3.0)
newlines = []
for x, y in lines:
newx = np.zeros_like(x)
newy = np.zeros_like(y)
for ii, xx in enumerate(x):
newx[ii] = -c120 * (xx - 1.0) - s120 * y[ii] + 1.0
newy[ii] = -s120 * (xx - 1.0) + c120 * y[ii]
newlines.append([newx, newy])
newstable_entries = {(-c120 * (c[0] - 1.0) - s120 * c[1] + 1.0,
-s120 * (c[0] - 1.0) + c120 * c[1]): entry
for c, entry in stable_entries.items()}
newunstable_entries = {
entry: (-c120 * (c[0] - 1.0) - s120 * c[1] + 1.0,
-s120 * (c[0] - 1.0) + c120 * c[1])
for entry, c in unstable_entries.items()}
return newlines, newstable_entries, newunstable_entries
elif nameup == ordering[2]:
if nameleft == ordering[0]:
c240 = np.cos(4.0 * np.pi / 3.0)
s240 = np.sin(4.0 * np.pi / 3.0)
newlines = []
for x, y in lines:
newx = np.zeros_like(x)
newy = np.zeros_like(y)
for ii, xx in enumerate(x):
newx[ii] = c240 * (xx - cc[0]) - s240 * (y[ii] - cc[1]) + cc[0]
newy[ii] = s240 * (xx - cc[0]) + c240 * (y[ii] - cc[1]) + cc[1]
newlines.append([newx, newy])
newstable_entries = {
(c240 * (c[0] - cc[0]) - s240 * (c[1] - cc[1]) + cc[0],
s240 * (c[0] - cc[0]) + c240 * (c[1] - cc[1]) + cc[1]): entry
for c, entry in stable_entries.items()}
newunstable_entries = {
entry: (c240 * (c[0] - cc[0]) - s240 * (c[1] - cc[1]) + cc[0],
s240 * (c[0] - cc[0]) + c240 * (c[1] - cc[1]) + cc[1])
for entry, c in unstable_entries.items()}
return newlines, newstable_entries, newunstable_entries
else:
c240 = np.cos(4.0 * np.pi / 3.0)
s240 = np.sin(4.0 * np.pi / 3.0)
newlines = []
for x, y in lines:
newx = np.zeros_like(x)
newy = np.zeros_like(y)
for ii, xx in enumerate(x):
newx[ii] = -c240 * xx - s240 * y[ii]
newy[ii] = -s240 * xx + c240 * y[ii]
newlines.append([newx, newy])
newstable_entries = {(-c240 * c[0] - s240 * c[1],
-s240 * c[0] + c240 * c[1]): entry
for c, entry in stable_entries.items()}
newunstable_entries = {entry: (-c240 * c[0] - s240 * c[1],
-s240 * c[0] + c240 * c[1])
for entry, c in unstable_entries.items()}
return newlines, newstable_entries, newunstable_entries